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a b s t r a c t

In this paper, a challenging power system problem of effectively scheduling generating units for

maintenance is presented and solved. The problem of generator maintenance scheduling (GMS) is

solved in order to generate optimal preventive maintenance schedules of generators that guarantee

improved economic benefits and reliable operation of a power system, subject to satisfying system load

demand, allowable maintenance window, and crew and resource constraints. A multiple swarm

concept is introduced for the modified discrete particle swarm optimization (MDPSO) algorithm to form

a robust algorithm for solving the GMS problem. This algorithm is referred to by the authors as multiple

swarms-modified particle swarm optimization (MS-MDPSO). The performance and effectiveness of the

MS-MDPSO algorithm in solving the GMS problem is illustrated and compared with the MDPSO

algorithm on two power systems, the 21-unit test system and 49-unit Nigerian hydrothermal power

system. The GMS of the two power systems are considered and the results presented shows great

potential for utility application in their area control centers for effective energy management, short and

long term generation scheduling, system planning and operation.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Maintenance scheduling of generating units is an important
task in power system and plays important role in the operation
and planning activities of the electric power utility. The
simultaneous solution of all aspects of the operation and planning
scheduling problems in the presence of system complexity at
different time-scales, different order of uncertainties and pro-
blems dimensionality is required for the efficient economic
operation of the utility system.

Power system equipment are made to remain in good
operating conditions by regular preventive maintenance. The task
of generator maintenance is often performed manually by human
experts who generate the schedule based on their experience and
knowledge of the system, and in such cases there is no guarantee
that the optimal or near optimal schedule is found. The purpose of
maintenance scheduling is to find the sequence of scheduled
outages of generating units over a given period of time such that
the level of energy reserve is maintained. This type of schedule is
important mainly because other planning activities are directly
affected by such decisions. Modern power systems have
witnessed increased demand for electrical energy with a related
ll rights reserved.

: +1 573 3414532.
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expansion in system size, which leads to higher number of
generators and lower reserve margins. The resultant effect is the
increased complexity of the constrained generator maintenance
scheduling (GMS) optimization problem for such large power
system. Present research efforts toward solving the GMS con-
strained optimization problem can be categorized based on the
objective function and the type of the problem hyper space
(Marwali and Shahidehpour, 2000; Dahal and Chakpitak, 2007;
Edwin and Curtius, 1990; Yamayee and Sidenblad, 1983; Dopaz
and Merrill, 1975; Yamayee, 1982; Kim et al., 1997; Chen and
Toyoda, 1991; Billinton and Abdulwhab, 2003; Satoh and Nara,
1991). Optimization methods such as branch and bound
technique (Edwin and Curtius, 1990), dynamic programming
(Yamayee and Sidenblad, 1983) and integer programming (Dopaz
and Merrill, 1975) were few early techniques that were used to
solve simple optimization problems. Approximate solution to the
constrained GMS problem can be obtained using new problem
optimization concepts (Billinton and Abdulwhab, 2003; Satoh and
Nara, 1991; Yellen et al., 1992; Firma and Legey, 2002). Some of
these optimization methods include but not limited to applica-
tions of probabilistic approach (Billinton and Abdulwhab, 2003),
simulated annealing (Satoh and Nara, 1991), decomposition
technique (Yellen et al., 1992) and genetic algorithm (GA) (Firma
and Legey, 2002).

Bio-inspired and evolutionary techniques have been shown to
be very effective optimization tools in solving power system
problems (Lee and El-Sharkawi, 2008). Hence their application in
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Nomenclature

AMt available manpower at period t

c1 & c2 cognitive constant and social acceleration constants,
respectively

d dimension of the problem
Di duration of maintenance for unit i

DPSO discrete particle swarm optimization
ei earliest period for maintenance of unit i to begin
ES evolutionary strategy
GA genetic algorithm
GMS generator maintenance scheduling
i index of generating units
I set of generating unit indices
li latest period for maintenance of unit i to end
j index of n multiple swarms
k discrete time step
l index of particle in a swarm
Lt anticipated load demand for period t

m population size of each swarm
MDPSO modified discrete particle swarm optimization
MS-MDPSO multiple swarms-modified discrete particle

swarm optimization
Mit manpower needed by unit i at period t

Mr mutation rate
N total number of generating units
Nc number of constraint violation
n number of multiple swarms

Pj
t jth swarm population in time t

Pjgd jth swarm global best position for dimension d

Pjlbd lth particle best position in jth Swarm for dimension d

Pik generating capacity for unit i in start time period k

Pit generating capacity of unit i in period t

PSO particle swarm optimization
R spinning reserve
rand, rand1 and rand2 random numbers for a uniform distribu-

tion in the range of [0,1]
randn Gaussian distributed random number with a zero

mean and a variance of 1
Sit set of start time period
t index of period
T set of indices of periods in planning horizon
Ti set of periods when maintenance of unit i may start
9V19,9V29 & 9V39 amount of violations of load, maintenance

window and crew constraints, respectively
Vc amount of violation of constraint c

Vjld lth particle velocity in jth swarm for dimension d

winer inertia weight constant which is a fixed value, linearly
decreasing or dynamically changing

oc weighting coefficient
o1, o2 & o3 weighting coefficients of load, maintenance

window and crew constraints, respectively
Xik maintenance start indicator for unit i in start time

period k

Xit maintenance start indicator for unit i in period t

Xjld lth particle position in jth swarm for dimension d

Y. Yare, G.K. Venayagamoorthy / Engineering Applications of Artificial Intelligence 23 (2010) 895–910896
solving power system optimization problems, such as GMS, unit
commitment and economic dispatch problems. The multi-species
particle swarm optimizer presented in Iwamatsu (2006) extends
the original PSO by dividing the particle swarm spatially into a
multiple cluster called a species in a multi-dimensional search
space. Each species explores a different area of the search space
and tries to find out the global or local optima of that area, hence
can be used to locate all the global minima of multi-modal
functions in parallel (Iwamatsu, 2006). Particle population is split
into a set of interacting swarms (Blackwell and Branke, 2006).
These swarms interact locally by an exclusion parameter and
globally through a new anti-convergence operator (Blackwell and
Branke, 2006). Cooperative particle swarm optimizer is presented
in Van den Bergh and Engelbrecht (2004) where cooperative
behavior is used to significantly improve the performance of the
original PSO algorithm, achieved by using multiple swarms to
optimize different components of the solution vector coopera-
tively. Three sub-swarm discrete particle swarm optimization
algorithm is presented in Xu et al. (2006), where particles are
divided into three sub-swarms. One sub-swarm flies toward
global best position, the second sub-swarm flies in the opposite
direction, while the third sub-swarm flies randomly around the
global best position (Xu et al., 2006). A strategy that allocates an
appropriate number of swarms as required to support conver-
gence and diversity criteria among the swarms is presented in Yen
and Leong (2009). The multiple swarms in Yen and Leong (2009)
are encouraged to explore different regions, and their collective
efforts and knowledge are shared among the swarms, thus the
diversity is preserved. PSO approaches based on some form of
implicit or explicit grouping of particles into sub-swarms is
presented in Engelbrecht (2005). Two main approaches of sub-
swarms PSO algorithms in Engelbrecht (2005) are the cooperative
and competitive PSO algorithms. The cooperative PSO algorithm
has some form of cooperation existing between sub-swarms. The
cooperation is mainly in terms of exchanging information about
best positions found by the different groups. On the other hand,
the competitive PSO algorithm is where the particles are in direct
competition with other particles. Multi-phase PSO algorithm
presented in Al-Kazemi and Mohan (2002a, 2002b) divides the
main swarm of particles into subgroups, where each subgroup
performs a different task, or exhibits a different behavior. The
behavior of a group, or a task performed by a group usually
changes over time in response to the group’s interaction with the
environment, different groups of particles have trajectories that
proceed along trajectories with different goals in different phases
of the algorithm (Al-Kazemi and Mohan, 2002a, 2002b).

Capabilities of discrete particle swarm optimization (DPSO)
algorithm have been enhanced with evolutionary strategies (ESs)
to produce a modified discrete particle swarm optimization
(MDPSO) in Yare et al. (2008). Detail comparison of three
algorithms – DPSO, MDPSO and GA and their application to
solving the power system GMS problem are also presented in Yare
et al. (2008), which showed that MDPSO produced better results
compared with DPSO and GA on similar benchmark test systems.

The primary contributions of this paper are:
�
 Solving the challenging GMS problem for 21-unit test system
and 49-unit Nigerian hydrothermal power system using
enhanced swarm-evolutionary hybrid algorithms.

�
 Improving the quality of the maintenance schedules generated

during GMS in terms of reliability and energy cost over
what was achieved by MDPSO (Yare et al., 2008) algorithm.
This improvement is achieved through the use of the multiple
swarms concept and an MDPSO algorithm referred to by the
authors as the multiple swarms-modified discrete particle
swarm optimization (MS-MDPSO). The MS-MDPSO algorithm
takes advantage of maximizing benefits arising from a
balanced trade-off of both the exploitation abilities of each n
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multiple swarms of population sizes m1, m2, y, mj, y, mn

(where m1¼m2¼?¼mj¼?¼mn¼m is been used for this
study) and the exploration of the n multiple swarms put
together, and then evolving a single global best solution from a
set of n global best solutions obtained from n multiple swarms.

�
 The performance of the MS-MDPSO algorithm is illustrated

and compared with the MDPSO (Yare et al., 2008) algorithm
for solving the GMS problem of the two practical power
systems.

The rest of the paper is organized as follows: The mathematical
problem formulation is presented in Section 2. Section 3 describes
the concept of the multiple swarms-MDPSO algorithm.
Implementation of MS-MDPSO for GMS and typical results are
presented in Section 4. Finally, the conclusions are presented in
Section 5.
2. Problem formulation

The purpose of maintenance operation is to extend equipment
lifetime, or at least the mean time to the next failure whose repair
may be costly. It is expected that effective maintenance policies
can reduce the frequency of service interruptions and the many
undesirable consequences of such interruptions. Maintenance
clearly affects components and system reliability: if too little is
done, this may result in an excessive number of costly failures
and poor system performance, and hence reliability is degraded,
when done too often, reliability may improve but the cost of
maintenance will sharply increase. In a cost-effective scheme,
reliability and cost of maintenance must be balanced.

Suppose TiCT is the set of periods when maintenance of unit i

may start, Ti ¼ ftAT : eirtr li�Diþ1g for each i.
Define

Xit ¼
1 if unit i starts maintenance in period t

0 otherwise

�
ð1Þ

to be the maintenance start indicator for unit i in period t. Let Sit

be the set of start time periods k such that if the maintenance of
unit i starts at period k that unit will be in maintenance at period
t, Sit ¼ fkATi : t�Diþ1rkrtg. Let It be the set of units which are
allowed to be in maintenance in period t, It ¼ fi : tATig.

The two main categories of objective functions in solving GMS
problem are based on reliability and economic cost (Dahal and
Chakpitak, 2007; Yare et al., 2008; Dahal et al., 2000; Wang and
McDonald, 1994). The reliability criterion of optimizing genera-
tion over the entire operational period of study is considered for
solving the GMS problem in this paper. The net reserve of the
system during any period t is the total installed capacity from

all generating units
P

iA It
Pit

� �
minus the reserve loss due to

the pre-scheduled outages as a result of planned generator
maintenance

P
iA It

P
kASit

Xik Pik

� �
and the peak load forecast

for that maintenance period (Lt). Hence the componentP
iA It

Pit�
P

iA It

P
kA Sit

Xik Pik�Lt

� �
represents the net reserve level

in time period t. Minimizing the sum of the squares of the
reserves over the entire operational planning period enhances
reduction in large variations of reserve and better long-term
reserve capacity planning in the presence of unit maintenance.
Therefore, the objective function to be minimized can be
expressed by

Min
Xit

X
t

X
iA It

Pit�
X
iA It

X
kA Sit

Xik Pik�Lt

0
@

1
A

28<
:

9=
; ð2Þ

The objective function in (2) is minimized subject to the
following unit and system constraints given by (3), (4) and (5).
Transmission loss and network limitations constraints are not
considered for simplicity, but could be flexibly incorporated.
�
 Load and spinning reserve constraints – this specifies that the
total capacity of the units running at any interval should not be
less than forecasted load and spinning reserve for that interval:X
iA It

Pit�
X
iA It

X
kA Sit

Xik PikZLtþR 8t ð3Þ

Maintenance window and sequence constraints – this defines
�

the starting of maintenance at the beginning of an interval and
finishing at the end of the same interval. The maintenance
cannot be aborted or finished earlier than scheduled:X
tATi

Xit ¼ 1 8i ð4Þ

Crew and resource constraints – this specifies that for each
�

maintenance period, the number of people to perform
maintenance schedule cannot exceed the available crew. It
also defines manpower availability and the limits on the
resources/tools needed for maintenance activity at each time
period:X
iATt

X
kA Sit

Xik MikrAMt 8t ð5Þ

Penalty cost given by (6) is added to the objective function in
(2) if the schedule cannot satisfy the load, maintenance window
and crew constraints. The penalty value for each constraint
violation 9V19, 9V29 and 9V39 is proportional to the amount by
which the constraint is violate:

Penalty cost¼
XNc

c ¼ 1

oc9Vc9¼o19V19þo29V29þo39V39 ð6Þ

The weighting coefficients o1, o2 and o3 are chosen in such a
way that the violation of harder constraints gives a greater
penalty value than for softer constraints. Typically the weighting
coefficients are in the range 0.2–1.2.
3. Multiple swarms-MDPSO algorithm

Section 3.1 presents the MDPSO algorithm, while Section 3.2
presents the design details of the MS-MDPSO algorithm whose
flowchart is shown in Fig. 1(a) and (b).

3.1. MDPSO

The modified discrete particle swarm optimization (MDPSO)
algorithm presented in Engelbrecht (2005) and Yare et al. (2008)
is an enhancement of DPSO algorithm with the inclusion of an
evolutionary strategy based mutation operator similar to the one
used in genetic algorithm. The MDPSO algorithm is applied in the
update procedure of the velocities and positions of the particles
(Yare et al., 2008).

Let X and V denote a particle’s coordinates (position) and
its corresponding flight speed (velocity) in a search space,
respectively. Therefore, the lth particle is represented as Xld¼

(Xl1, Xl2, y, XlN) in the d-dimensional space. The best previous
position of the lth particle, referred to as pbest, is recorded and
represented as Plbd¼(Plb1, Plb2, y, PlbN). The index of the best
particle among all the pbest in the swarm is referred to as the
gbest and is represented by Pgd. The rate of the velocity for particle
lth is represented as Vld¼(Vl1, Vl2, y, VlN). The new velocity
and position for each particle i in dimension d is determined
according to the velocity and position update equations given by
(7) and (8), respectively. The inertia weight winer is updated



Initialize particle population Pj of size mj

set iteration=1 and discrete time k=1

A

B

Set k=k+1

Update particles’ velocities and positions using (12)-(13)

Perform mutation using (14)-(15)

gbestj

Have stopping 
conditions been met?

Encode particles according to (11)

Evaluate the objective function given by (2)

Update mj pbest and gbestj 

Is 
rand<mutation rate?

Is termination 
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No
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No

Yes
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Fig. 1. MS-MDPSO algorithm framework for power system GMS problem: (a) n multiple swarms-MDPSO and (b) MDPSO implementation for multiple swarms application.
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according to (9):

VldðtÞ ¼ round winer Vldðt�1Þþc1 rand1ðPlbdðt�1Þ�Xldðt�1ÞÞð

þc2 rand2ðP
�
gbðt�1Þ�Xldðt�1ÞÞ

�
ð7Þ

XldðtÞ ¼ Xldðt�1ÞþVldðtÞ ð8Þ

winer ¼wmax
iner �

wmax
iner �wmin

iner

itermax

 !
� iter ð9Þ

A mutation operator is introduced into the DPSO algorithm
above, so that the swarm’s best position in dimension d is updated
according to (10). Supposing P �

gd is the particle chosen with a
random number less than a predefined mutation rate (for
0omutation rateo0.3), then the mutation equation is given by

P�gd ¼ PgdþðrandnðÞ � Pgd=2Þ ð10Þ

d¼1, 2, y, N is the problem dimension.

3.2. MS-MDPSO

The concept of multiple swarms with modified discrete
particle swarm optimization (MDPSO) to explore the problem
space together for the purpose of finding optimal solutions is
considered in this paper. Multiple swarms in MDPSO select their
own global best leaders to lead and influence their movement
toward the best solution found so far. Information shared within a
swarm and among swarms is portrayed in the multiple swarms’
movement. This concepts produce an improved and efficient
hybrid algorithm referred to in this paper, as the multiple
swarms-modified discrete particle swarm optimization (MS-
MDPSO) algorithm and is applied to solving the GMS problem
as illustrated in the flowchart of Fig. 1(a) and (b).

The MS-MDPSO algorithm takes advantage of maximizing
benefits arising from a balanced trade-off of both the exploitation
abilities of each n multiple swarms of population sizes
m1, m2, y, mj, y, mn (where m1¼m2¼?¼mj¼?¼mn¼m has
been used for this study) and the exploration of the n multiple
swarms put together, and then evolving a single global best
solution from a set of n global best solutions obtained from
n multiple swarms. It is this newly found single global best
solution that is used to generate the optimal solution (optimal
maintenance schedules) for this GMS problem as depicted in
Fig. 1(a) and (b).

Particle Xk
jl (where j¼1, 2, y, n, and l¼1, 2, y, m) in each of

the n multiple swarms of population Pk
1,Pk

2,. . .Pk
j ,. . .,Pk

n with sizes
m1, m2, y, mj, y, mn, respectively can be modeled at discrete



Table 1
Data for the 21-unit test system.

Unit Capacity

(MW)

Allowed

maintenance

period

Maintenance

duration

(weeks)

Manpower required by

units for each maintenance

week

1 555 1–26 weeks 7 10+10+5+5+5+5+3

2 180 2 15+15

3 180 1 20

4 640 3 15+15+15

5 640 3 15+15+15

6 276 10 3+2+2+2+2+2+2+2+2+3

7 140 4 10+10+5+5

8 90 1 20

9 76 2 15+15

10 94 4 10+10+10+10

11 39 2 15+15

12 188 2 15+15

13 52 3 10+10+10

14 555 27–52 weeks 5 10+10+10+5+5

15 640 5 10+10+10+10+10

16 555 6 10+10+10+5+5+5

17 76 3 10+15+15

18 58 1 20

19 48 2 15+15

20 137 1 15

21 469 4 10+10+10+10
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time k by

Pk
1 ¼ Xk

11 Xk
12 � � � Xk

1m1

��� i
, Pk

2 ¼ Xk
21 Xk

22 � � � Xk
2m2

��� i
,

������h������h
Pk

j ¼ Xk
j1 Xk

j2 � � � Xk
jmj

��� i
, Pk

n ¼ Xk
n1 Xk

n2 � � � Xk
nmn

��� i������h������h
ð11Þ

where m1¼m2¼?¼mj¼?¼mn¼m for this study.

The MDPSO velocity and position update equations given by
(7) and (8), respectively are modified and used in the MS-MDPSO
algorithm to update the particles’ velocities and positions in each
n multiple swarms as shown in

VjldðkÞ ¼ roundðwiner Vjldðk�1Þþc1 rand1ðPjlbdðk�1Þ

�Xjldðk�1ÞÞþc2 rand2ðP
�
jgbðk�1Þ�Xjldðk�1ÞÞÞ ð12Þ

XjldðkÞ ¼ Xjldðk�1ÞþVjldðkÞ ð13Þ

With w¼0.8, c1¼2 and c2¼2, the particles have good global
searching abilities and converge to the global optimal position.

For mutation rate that lies within the range (0oMr o0.3), the
mutation equation of the chosen particle is modified from (10)
and given by

If rand o Mr

P�jgdðk�1Þ ¼ Pjgdðk�1Þþceilðrandn� Pjgdðk�1Þ=bgbÞ ð14Þ

else

P�jgdðk�1Þ ¼ Pjgdðk�1Þ ð15Þ

endwhere bgb can be either dynamically changing or fixed, and
controls the mutation process. The mutation operation increases
the diversity of the population by preventing the particles from
moving too close to each other, thus converging prematurely to
local optima.
4. Implementation of MS-MDPSO for GMS and results

Two cases studies are presented in this section to demonstrate
the application and performance of the MS-MDPSO algorithm
compared with MDPSO algorithm for solving the GMS problem of
two practical power systems.

4.1. GMS implementation with MS-MDPSO

The global best solution is the evolved single best solution
from a set of n global best solutions of the n multiple swarms.
The performances of the n global best solutions are measured
by comparing their fitness evaluations against each other. The
resultant solution with the best fitness emerges as the single
global best solution of the n multiple swarms. The global best
solution is then used to generate the optimal maintenance
schedules for all the generating units. It is also used to determine
the optimal maintenance start period Xik for each generating unit
i, and when applied to (3) and (5) it produces the optimal
available generation from all running units during maintenance
and crew requirement for generators undergoing maintenance,
respectively, over a maintenance period of 52 weeks.

4.2. 21-Unit test system

A test system comprising twenty one generating units (Dahal
and Chakpitak, 2007, Yamayee and Sidenblad, 1983; Yare et al.,
2008; Dahal et al., 2000; Wang and McDonald, 1994) with
installed capacity, units’ maintenance duration (weeks) and
anticipated manpower requirement over a maintenance planning
period of 52 weeks is used to demonstrate the performance of the
MS-MSPSO algorithm for the GMS problem. Table 1 shows the
unit rating, allowed maintenance period, maintenance duration
and technical manpower/crew requirement by generating units
during each maintenance week. The maintenance outages for the
generating units are scheduled to minimize the sum of squares of
reserves and meet the maintenance window constraint (each unit
must be maintained exactly once every 52 weeks without
interruption), the system peak load demand (4739 MW), and
manpower/crew requirements to carry out maintenance tasks
(there is maximum of 35 in total of technical manpower/crews
available each week for the maintenance work).

4.2.1. Test, results and discussion

Fig. 2(a) and (b) shows typical available generation and
maintenance crew plots, respectively, for the 21-unit test system
using the MDPSO and MS-MDPSO algorithms. It can be deduced
from these figures and the typical maintenance schedules presented
in Table A1 of the Appendix that using the MDPSO algorithm, weeks
23 and 35 indicate periods with low maintenance task (no unit is
scheduled for maintenance) resulting in comparatively high
available generation on same weeks 23 and 35. Similarly, using
the MS-MDPSO algorithm, weeks 30 and 36 indicate periods with
low maintenance activity (no unit is scheduled for maintenance)
resulting in comparatively high available generation on same weeks
30 and 36. The weekly manpower requirement depicted in Fig. 2(b)
using the MS-MDPSO algorithm clearly satisfies the crew constraint
expressed in (5). This is not the case with the MDPSO algorithm, the
8th week experienced lowest drop in available generation (shown in
Fig. 2(a)) due to heightened maintenance activities carried out
simultaneously on units 3, 6 and 11 (shown in Table A1 of the
Appendix), which also violated the manpower/crew constraint in
(5). However, both the MDPSO and MS-MDPSO algorithms produced
available generation that satisfies the constraint given by (3) as
shown in Fig. 2(a).

Fig. 2(c) shows typical convergence of the objective function
given in (2) for the 21-unit test system using MDPSO and
MS-MDPSO algorithms, obtained after 100 iterations. The figure
shows that the minimization of the objective function converged
to 13,863,021.02 and 13,749,264.32 using the MDPSO and MS-
MDPSO algorithms, respectively. A lower value of the objective
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function is preferable for better economic benefit, and is also a
guarantee for more effective maintenance schedules produced by
the MS-MDPSO algorithm.

Table 2 presents the statistical comparison of convergence
of the objective function for the 21-unit test system using the
MDPSO and MS-MDPSO algorithms, obtained after 100 iterations
of 5000 trials. The table shows optimal numerical values of the
objective function produced by MDPSO and MS-MDPSO to be
13,863,021.02 and 13,749,264.32, respectively, representing
113,756.70 (0.82%) reduction. This indicates improvement in
minimizing the objective function given by (2) using MS-MDPSO
compared with MDPSO algorithm, especially in cases with large
variations of system net reserve. It also represents improvement
in the quality of maintenance schedules generated by the
MS-MDPSO algorithm compared with the MDPSO algorithm.
The statistical results presented in Table 2 for the 21-unit test
system shows, generally, that the MS-MDPSO algorithm produced
better maintenance schedules compared with the MDPSO
algorithm for the same GMS problem.

Table 3 and Fig. 2(d)–(f) further illustrates the design and
application of MS-MDPSO algorithm for solving the GMS problem
by presenting typical evolution of single global best solution
(Gbest) from a set of five global best solutions (gbest1, gbest2,
gbest3, gbest4 and gbest5) obtained from five multiple swarms
(n¼5) over five trials for the 21-unit test system presented in
5 10 15 20 25 30 35 40 45 50
4500

5000

5500

6000

Maintenance Period (Weeks)

A
va

ila
bl

e 
G

en
er

at
io

n 
(M

W
)

Peak load

Max. Generation
MDPSO
MS-MDPSO

10 20 30 40 50 60 70 80 90
1.35

1.4

1.45

1.5

1.55

1.6
x 107

Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n

MDPSO
MS-MDPSO

100
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(a) Available generation versus maintenance period for MDPSO and MS-MDPSO, (b) cre

convergence of the objective function given by (2), (d) five multiple swarms-MDPSO,

iterations for five multiple swarms (five different trials).
Section 4.2. Table 3 and Fig. 2(e) shows that for the 21-unit test
system, the Gbest (consisting of an array of 100 global best
solutions) obtained for 100 iterations over the first trial is
primarily composed of gbest1 (33 global best solutions from
swarm #1), gbest2 (28 global best solutions from swarm #2),
gbest3 (22 global best solutions from swarm #3), gbest4 (14 global
best solutions from swarm #4) and gbest5 (2 global best solutions
from swarm #5). Further, Gbest feasible solutions obtained over
five trials are presented in Table 3 and depicted in Fig. 2(f).
4.3. Nigerian grid system

Table 4 presents data of the Nigerian grid system comprising a
total of 49 functional generating units spread across seven
generating stations located at: AFAM, DELTA, EGBIN, SAPELE,
JEBBA, KAINJI and SHIRORO (Yare et al., 2008) as depicted in Fig. 3.
The table shows the type of power station, name of power station,
plant number, name of turbine unit, type of turbine, unit’s actual
base case rating, allowed maintenance period, maintenance
duration and technical manpower/crew requirement by
generating unit for each maintenance week. All the generating
units at AFAM and DELTA stations as well as eight generating
units at EGBIN station are gas turbines (GTs), while all generating
units at SAPELE station and other six generating units at EGBIN
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Fig. 2. (Continued)

Table 2
Statistical comparison of convergence of the objective function for the 21-unit test

system.

Algorithm

MDPSO MS-MDPSO

Minimum 13,863,021.02 13,749,264.32

Maximum 14,132,336.49 14,015,289.69

Mean 13,984,883.84 13,870,778.81

Standard deviation 711,943 711,429
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station are steam turbines (STs). Also the four thermal plants
utilize natural gas supplied from the Nigerian Gas Company (NGC)
as their raw material input. The three hydrostations (Hs) namely
JEBBA, KAINJI and SHIRORO are located in Northwestern Nigeria.
Well over two decades of operational experience and available
historical data on hydrological conditions reveal that inflow
variation profile at each hydrostation location, by and large affects
the generated power output of each hydroplant (Yare et al., 2008).
The maintenance window and sequence constraints of the three
hydroplants are greatly influenced by the trend of the inflow into
these hydrological areas. This result in two distinct case studies
namely, case a: MDPSO-a and MS-MDPSO-a and case b: MDPSO-b
and MS-MDPSO-b described below.
4.3.1. Case a: MDPSO-a and MS-MDPSO-a

The operational data for the Nigerian grid system used to
illustrate the effectiveness and performance of the proposed
MS-MDPSO algorithm and compared with MDPSO algorithm is
shown in Table 4. The 49 generating units of the Nigerian data
need to be scheduled for maintenance over a 52 week main-
tenance planning period. The allowed period for maintenance,
maintenance duration and the manpower required for each
maintenance week are also shown in Table 4. Thermal and steam
turbines could be shut down for maintenance only when the
hydroplants are operating at their maximum generation, which
tallies with the months of January–April and November–Decem-
ber each operational year. On the other hand, the hydroplants



Table 3
Gbest solution for the 21-unit test system using MS-MDPSO.

21-unit test system

Number of trials

#1 (iterations) #2 (iterations) #3 (iterations) #4 (iterations) #5 (iterations) Total (%)

gbest1 33 2 4 48 8 95 (19.0%)

gbest2 28 55 19 24 61 187 (37.4%)

gbest3 22 40 4 14 16 96 (19.2%)

gbest4 15 2 2 10 12 41 (8.2%)

gbest5 2 1 71 4 3 81 (16.2%)

Gbest 100 100 100 100 100 500 (100%)

Table 4
Power station, maintenance and manpower data for the 49 generating units in the Nigerian grid system.

Type of

power

station

Power station Allowed maintenance

period

Maintenance

duration (Weeks)

Manpower required by units for

each maintenance week

Name of

power station

S/

N

Plant

number

Name of

turbine unit

Type of

turbine

Base case

rating (MW)

Thermal EGBIN PS 1 3 EGBINST1 ST 190.0 January–April

(1–17 weeks)

5 6+5+5+4+2

2 3 EGBINST2 ST 190.0 5 6+5+5+4+2

3 3 EGBINST3 ST 190.0 5 6+5+5+4+2

4 3 EGBINST4 ST 190.0 5 6+5+5+4+2

5 3 EGBINST5 ST 190.0 5 6+5+5+4+2

6 3 EGBINST6 ST 190.0 5 6+5+5+4+2

7 4 EGBINGT1 GT 220.0 2 4+3

8 4 EGBINGT2 GT 30.0 2 4+3

9 4 EGBINGT3 GT 30.0 2 4+3

10 4 EGBINGT4 GT 30.0 2 4+3

11 4 EGBINGT5 GT 30.0 2 4+3

12 4 EGBINGT6 GT 30.0 2 4+3

13 4 EGBINGT7 GT 30.0 2 4+3

14 4 EGBINGT8 GT 30.0 2 4+3

SAPELE PS 15 5 SAPELST1 ST 0.0 4 4+3+3+2

16 5 SAPELST2 ST 0.0 4 4+3+3+2

17 5 SAPELST3 ST 0.0 4 4+3+3+2

18 5 SAPELST4 ST 0.0 4 4+3+3+2

19 5 SAPELST5 ST 0.0 4 4+3+3+2

20 5 SAPELST6 ST 85.3 4 4+3+3+2

Hydro JEBBA PS 21 6 JEBBGH1 H 88.3 May–October

(18–43 weeks)

4 5+4+3+2

22 6 JEBBGH2 H 88.3 4 5+4+3+2

23 6 JEBBGH3 H 88.3 4 5+4+3+2

24 6 JEBBGH4 H 88.3 4 5+4+3+2

25 6 JEBBGH5 H 88.3 4 5+4+3+2

26 6 JEBBGH6 H 88.3 4 5+4+3+2

KAINJI PS 27 7 KAING05 H 112.5 4 5+5+4+3

28 7 KAING06 H 0.0 4 5+5+4+3

29 7 KAING07 H 0.0 3 4+3+2

30 7 KAING08 H 0.0 3 4+3+2

31 7 KAING09 H 0.0 3 4+3+2

32 7 KAING10 H 76.5 3 4+3+2

33 7 KAING11 H 90.0 4 5+4+3+3

34 7 KAING12 H 0.0 4 5+4+3+3

SHIRORO PS 35 8 SHIRGH1 H 249.0 2 4+3

36 8 SHIRGH2 H 249.0 2 4+3

37 8 SHIRGH3 H 140.0 2 4+3

38 8 SHIRGH4 H 249.0 2 4+3

Thermal AFAM PS 39 1 AFAMGT19 GT 138.0 November–December

(44–52 weeks)

5 5+5+4+3+3

40 1 AFAMGT20 GT 138.0 5 5+5+4+3+3

DELTA PS 41 2 DELTAG03 GT 19.6 2 4+3

42 2 DELTAG04 GT 19.6 2 4+3

43 2 DELTAG06 GT 19.6 2 4+3

44 2 DELTAG07 GT 19.6 2 4+3

45 2 DELTAG08 GT 0.0 4 4+4+3+3

46 2 DELTAG15 GT 85.0 4 4+4+3+3

47 2 DELTAG16 GT 85.0 4 4+4+3+3

48 2 DELTAG17 GT 85.0 4 4+4+3+3

49 2 DELTAG18 GT 85.0 4 4+4+3+3

PS – power station, GT – gas turbine, ST – steam turbine, H – hydro.
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Fig. 3. Nigerian 330 kV grid showing seven power generating stations.

Table 5
Annual generation, load demand and cost of purchasing energy.

Annual generation –

without

maintenance

Annual generation –

with scheduled

shutdown

maintenance

Annual load

demand

Annual

suppressed load –

without

maintenance

Annual suppressed

load – with scheduled

shutdown

maintenance

Increase in

suppressed load

due to maintenance

Case MDPSO-a
Mega watt hour (MWh) 29,601,936.00 27,348,048.00 31,990,896.00 2,388,960.00 4,643,016.00 94.35%

Cost of purchasing energy (�1000 Naira/year) 191,945,376.00 14,333,760.00 27,858,096.00 13,524,336.00

Case MS-MDPSO-a
Mega watt hour (MWh) 29,601,936.00 27,349,056.00 31,990,896.00 2,388,960.00 4,641,840.00 94.30%

Cost of purchasing energy (�1000 Naira/year) 191,945,376.00 14,333,760.00 27,851,040.00 13,517,280.00

Case MDPSO-b
Mega watt hour (MWh) 29,601,936.00 27,348,552.00 31,990,896.00 2,388,960.00 4,642,344.00 94.32%

Cost of purchasing energy (�1000 Naira/year) 191,945,376.00 14,333,760.00 27,854,064.00 13,520,304.00

Case MS-MDPSO-b
Mega watt hour (MWh) 29,601,936.00 27,349,728.00 31,990,896.00 2,388,960.00 4,641,168.00 94.27%

Cost of purchasing energy (�1000 Naira/year) 191,945,376.00 14,333,760.00 27,847,008.00 13,513,248.00

Cost of energy in Nigeria: 6 Naira/kWh and 150 Naira is equivalent to 1 US Dollar.
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can be scheduled for maintenance during low water level
corresponding to the months of May–October, the thermal plants
supports the hydrogeneration within these periods and should
therefore not be scheduled for shutdown maintenance. 5%
increased load variation is allowed during the hot season of
March to July each operational year.
4.3.2. Case b: MDPSO-b and MS-MDPSO-b

The economic implication in terms of reduced energy cost and
increased reliability is enhanced by a logical and appropriate
combination of thermal and hydroplants for maintenance within
the period of low water level from May to October. These are
investigated in this case study. Only five of the thermal plants,
namely AFAMG 19, AFAMG 20, EGBINST 1, EGBINST 2 and
SAPELEST 6 are allowed to be scheduled for maintenance along
with the hydroplants within the period of low water level. There
is 5% increased load variation allowed during the hot season of
March–July each operational year.
4.3.3. Test, results and discussion

Table A2 in the Appendix presents the generator schedules
obtained by case a: MDPSO-a and MS-MDPSO-a, while the
schedules produced by case b: MDPSO-b and MS-MDPSO-b are
shown in Table A3. Notice that both MDPSO-b and MS-MDPSO-b
of case b in Table A3 generate similar maintenance schedules
for weeks 14, 15, 16 and 17.

Table 5 presents the annual generation, load demand and the
cost in Nigerian Naira for purchasing energy form Independent
Power Producers (IPPs). The resultant suppressed loads as a
consequence of scheduled maintenance work are also shown in
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Table 5. The suppressed loads can be catered for by purchase
of additional energy from IPPs, or other sources. The annual base
case generation for Nigeria cannot meet the annual load demand
due to inadequate generation from some generating units. These
units’ energy contributions to the national grid are marginally low
and are represented with a zero generation as shown in Table 4.
This scenario translates to frequent load shedding over the entire
maintenance planning period of 52 weeks. Table 5 shows 94.35%
and 94.30% increases in suppressed loads due to scheduled
maintenance planning using MDPSO-a and MS-MDPSO-a,
respectively. These translates to 13,524,336,000.00 and
13,517,280,000.00 Naira/year as costs of purchasing additional
energy from IPPs to supplement and meet the rising energy
demand occasioned by the increases in suppressed loads due to
scheduled maintenance. Table 5 shows that case MS-MDPSO-a
produces a 0.05% reduction in suppressed load increase compared
to case MDPSO-an under scheduled shutdown maintenance.

Similarly, Table 5 also shows 94.32% and 94.27% increases in
suppressed load occasioned by scheduled maintenance planning
using MDPSO-b and MS-MDPSO-b, respectively. These infer
13,520,304,000.00 and 13,513,248,000.00 Naira/year as costs of
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purchasing additional energy from IPPs to satisfy the rising energy
demand caused by increases in suppressed loads due to scheduled
maintenance. Case MS-MDPSO-b produces a 0.05% reduction in
suppressed load increase compared to case MDPSO-b under
scheduled maintenance. These reductions translate to a huge
annual savings of energy to be purchased in order to service the
suppressed loads. The percentages may be small, but they are
worth noting considering their impacts over an entire operational
year, and could form basis for good planning and better energy
management. Saved cost of fuel for units scheduled for main-
tenance was not considered in this study.

Fig. 4(a) shows the available generation for case a: MDPSO-a and
MS-MDPSO-a, while the available generation for case b: MDPSO-b
and MS-MDPSO-b are presented in Fig. 4(b). Presented in the two
figures are also the maximum generation of 3388MW and a 5% load
variation within the hot season of March to July each year. For cases
MDPSO-a and MS-MDPSO-a, between the months of May and
October when the hydroplants are undergoing maintenance, the
major energy generation is supplied from the thermal plants since
they are not scheduled for maintenance within this period. Their
energy generation curves are not spread evenly over the entire
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maintenance period, which is interpreted as resulting to an
unpredictable energy profile which causes large and sudden
variations in loads requiring shedding. Cases MDPSO-b and MS-
MDPSO-b however, generate evenly distributed generation
throughout the year under maintenance, with an average
generation and standard deviation of 3130.557779.781 MW and
Table 6
Cost of improving the reliability index.

Without maintenance

Case MDPSO-a

Reliability index 0.89 1

Cost (�1000 Naira) 0 14,333,760.00

Case MS-MDPSO-a

Reliability index 0.89 1

Cost (�1000 Naira) 0 14,333,760.00

Case MDPSO-b

Reliability index 0.89 1

Cost (�1000 Naira) 0 14,333,760.00

Case MS-MDPSO-b

Reliability index 0.89 1

Cost (�1000 Naira) 0 14,333,760.00
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3130.692778.125 MW, respectively. While cases MDPSO-a and
MS-MDPSO-a produce average generation and standard deviation of
3130.5007121.075 MW and 3130.6107119.559 MW, respectively.

Fig. 4(c) and (d) presents the corresponding crew availability
needed to carryout the scheduled shutdown maintenance of the
generating units for case a: MDPSO-a and MS-MDPSO-a, and case b:
With scheduled shutdown maintenance
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MDPSO-b and MS-MDPSO-b, respectively. Case b: MDPSO-b and
MS-MDPSO-b scheduling generate more even crew distribution over
the maintenance period compared with case a: MDPSO-a and MS-
MDPSO-a. Both cases however satisfied the crew constraint placed
at 30. Cases MDPSO-a and MS-MDPSO-a have an average crew
requirement and standard deviation of 1275.438 and 1274.769,
respectively, while cases MDPSO-b and MS-MDPSO-b require
1273.658 and 1273.567, respectively.

Table 6 presents the cost of improving ‘reliability index’ (RI) for
case a: MDPSO-a and MS-MDPSO-a and case b: MDPSO-b and
MS-MDPSO-b without maintenance and with scheduled shutdown
maintenance. The RI is computed by taking the minimum of the
ratio of available generation to load demand over 5000 trials and the
entire operational period (Yare et al., 2008) as given by

RI¼ Min
ðover 5000

trialsÞ

Min
ðover 52

weeksÞ

Avail:Gen:

Load
if Avail:Gen:rLoad

1 otherwise

0
@

1
A

0
BBBBB@

1
CCCCCA
ð16Þ

Table 6 shows that case MS-MDPSO-a produces schedules with
better RI compared with case MDPSO-a, while case MS-MDPSO-b
produces improved RI over case MDPSO-b under scheduled shutdown
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maintenance for 100 iterations of 5000 trials. Further experiments for
5000 iterations of 5000 trials reveals RIs of 0.76, 0.769, 0.78 and 0.786
for cases MDPSO-a, MS-MDPSO-a, MDPSO-b and MS-MDPSO-b,
respectively. The costs for 0.89 and 1 RIs under maintenance is seen
to be the least for case MS-MDPSO-b and the highest for case MDPSO-
a. These numerical RIs suggest that the Nigerian power system is
more reliable when this long-term maintenance planning is based on
MS-MDPSO algorithm compared with MDPSO algorithm. It also imply
enhanced capability of long-term predictability of generation and
manpower/crew requirement needed for maintenance over the entire
maintenance horizon using MS-MDPSO algorithm compared with
MDPSO algorithm.

Fig. 5(a) and (b) shows the plots of RIs versus iterations for
case a: MDPSO-a and MS-MDPSO-a, and case b: MDPSO-b and
MS-MDPSO-b, respectively, during shutdown maintenance
period, compared against the maximum RI of 0.89 representing
a case without any ongoing maintenance work taking place over a
period of 52 weeks. The plots show that case MS-MDPSO-b
generate the best RI of 0.772 while case MDPSO-a produce the
worst RI of 0.752 after 100 iterations of 5000 trials.

Fig. 5(c) and (d) presents the plots of cost of purchasing energy
versus the RI for case a: MDPSO-a and MS-MDPSO-a, and case b:
MDPSO-b and MS-MDPSO-b, respectively. It can be seen from the
figure that at any RI, the corresponding energy cost for case MS-
MDPSO-a is lower compared with case MDPSO-a, and similarly
case MS-MDPSO-b produce lower energy cost to be purchased
compared with case MDPSO-b. On the overall, at any energy cost
case MS-MDPSO -b gives the best RI compared with either
MDPSO-b, MS-MDPSO-a or MDPSO-a. Without maintenance for
the two cases, there is 14,333,760,000.00 Naira to be spent on
purchase of energy if a RI of 1 is desirable, otherwise the RI simply
remains at 0.89 with zero cost with no purchase of energy as
shown in Table 6. In the absence of any ongoing maintenance
work, the system has higher RI than the two cases considered
during scheduled shutdown maintenance, and there may not
be need to spend financial resources on energy purchases as a
consequence of maintenance actions.
Table 8
Gbest solution for the 49-unit Nigerian power system using MS-MDPSO.

49-unit Nigerian hydrothermal power system

Number of trials

#1 (iterations) #2 (iterations) #3 (iteration

gbest1 34 45 1

gbest2 11 9 24

gbest3 9 29 2

gbest4 5 6 48

gbest5 41 11 25

Gbest 100 100 100

Table 7
Statistical comparison of convergence of the objective function for the Nigerian power

Algorithm

Case a

MDPSO-a MS-MD

Minimum 33,000,504.15 32,913

Maximum 33,163,777.44 33,068

Mean 33,106,214.39 32,996

Standard deviation 745,580 742,7
Fig. 6(a) and (b) shows typical convergence of the objective
function for the Nigerian power system obtained after 100
iterations of 5000 trials. The converged results clearly present
minimization of the objective function given by (2). The
minimized objective function produced using Case a: MDPSO-a
and MS-MDPSO-a are 33,000,504.15 and 32,913,169.25,
respectively, as shown in Fig. 6(a). Similarly, the minimized
objective function produced using Case b: MDPSO-b and MS-
MDPSO-b are 31,550,689.31 and 31,416,025.42, respectively, as
shown in Fig. 6(b). The optimization process demonstrates the
capabilities of the MDPSO and MS-MDPSO algorithms in
minimizing large variations of system net reserve in case they
occur.

Table 7 shows the statistical comparison of convergence of the
objective function given by (2) for the Nigerian power system
using Case a: MDPSO-a and MS-MDPSO-a and Case b: MDPSO-b
and MS-MDPSO-b described in subsections 4.3.1 and 4.3.2,
respectively, obtained after 100 iterations of 5000 trials. The
table shows that for Case a, the minimized numerical values of the
objective function produced by MDPSO-a and MS-MDPSO-a are
33,000,504.15 and 32,913,169.25, respectively, representing
87,334.90 (0.26%) reduction. Similarly, for Case b, the minimized
numerical values of the objective function produced by MDPSO-b
and MS-MDPSO-b are 31,550,689.31 and 31,416,025.42,
respectively, representing 134,663.89 (0.42%) reduction. The
results indicate that better and enhanced optimization is
achieved with the MS-MDPSO compared with MDPSO for both
Cases an and b. The best optimization result of 31,416,025.00 is
obtained with the MS-MDPSO-b while the worst optimization
result of 33,000,504.00 is obtained with the MDPSO-a. The results
also imply that better maintenance schedules are generated by
the MS-MDPSO-b. Both MDPSO and MS-MDPSO algorithms
however, produce optimal schedules that utilizes every
allowable maintenance week of the entire 52 weeks as shown
in Tables A2 and A3 of the Appendix. The results presented for this
49-unit Nigerian hydrothermal power system shows, generally,
that the MS-MDPSO algorithm produces better maintenance
s) #4 (iterations) #5 (iterations) Total (%)

46 49 175 (35%)

5 35 84 (16.8%)

32 13 85 (17.0%)

9 1 69 (13.8%)

8 2 87 (17.4%)

100 100 500 (100%)

system.

Case b

PSO-a MDPSO-b MS-MDPSO-b

,169.25 31,550,689.31 31,416,025.42

,250.25 31,686,766.81 31,591,144.36

,982.49 31,597,889.45 31,477,710.25

10 742,630 741,890
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schedules compared with the MDPSO algorithm for this GMS
problem.

Table 8, Figs. 2(d), 6(c) and (d) further illustrate the design and
application of MS-MDPSO algorithm for solving the GMS problem
by presenting typical evolution of single global best solution
(Gbest) from a set of five global best solutions (gbest1, gbest2,
gbest3, gbest4 and gbest5) obtained from five multiple swarms
(n¼5) over five trials for the 49-unit Nigerian power system
presented in Section 4.3. Table 8 and Fig. 6(c) shows that for the
49-unit Nigerian power system, the Gbest (consisting of an array
of 100 global best solutions) obtained for 100 iterations over the
first trial is composed of gbest1 (34 global best solutions from
swarm #1), gbest2 (11 global best solutions from swarm #2),
gbest3 (9 global best solutions from swarm #3), gbest4 (5 global
best solutions from swarm #4) and gbest5 (41 global best
solutions from swarm #5). Gbest feasible solutions obtained
over five trials are also presented in Table 8 and depicted in
Fig. 6(d).
5. Conclusions

The problem of generating optimal preventive maintenance
schedules of generating units for the purpose of maximizing
economic benefits and improving reliable operation of a power
system, subject to satisfying system load demand, allowable
maintenance window, and crew and resource constraints over 52
weeks maintenance and operational period has been presented
for 21-unit test system and 49-unit Nigerian hydrothermal grid
system.

Improvement in the quality of the maintenance schedules
generated by MS-MDPSO algorithm in terms of reliability and
energy cost curtailment over what was achieved by MDPSO
algorithm has been presented. This improvement is achieved
through the use of the multiple swarms’ idea on the MDPSO
algorithm where the evolution of a single best global solution
Table A1
Typical generator maintenance schedules obtained by MDPSO and MS-MDPSO for the

Week no. Generating units scheduled for maintenance

MDPSO MS-MDPSO

1 1 12,13

2 1 12,13

3 1 4,13

4 1 4

5 1 4

6 1 2,6

7 1,6 2,6

8 3,6,11 6

9 2,6,11 6

10 2,6 6,7,8

11 6 6,7

12 6 6,7

13 6,13 6,7,11

14 6,10,13 6,11

15 6,10,13 6

16 6,7,10 6

17 7,10 5

18 7,9,12 5,9

19 7,9,12 5,9

20 4 1

21 4 1

22 4 1,10

23 – 1,10

24 5 1,10

25 5 1,10

26 5,8 1
among the swarms forms the optimal maintenance schedule for
respective power system. The better solutions obtained by the
MS-MDPSO algorithm for the two GMS problems are achieved at
the expense of more computational time, which is not a problem
since the simulation is done off-line.

With respect to the 49-unit Nigerian hydrothermal power
system, two possible case studies have been investigated and
compared. The logical and optimal placements of some thermal
plants for maintenance along with hydroplants during low
water level have been illustrated using the MDPSO and the
proposed MS-MDPSO algorithms, and their results compared.
The MS-MDPSO algorithm demonstrates better performance
over the MDPSO algorithm for this GMS problem, and produce
optimal maintenance unit scheduling framework for the Nigerian
power utility that achieved better utilization of available
energy generation with improved reliability and reduction in
energy cost.

The studies and analysis presented in this paper provides
potential for practical implementation and enhancement of
effective planning strategies that incorporates other short-term
generation scheduling measures, such as unit commitment and
economic load dispatch, and the integration of renewable energy
resources.
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Appendix

See Tables A1, A2 and A3.
21-unit test system.

Week no. Generating units scheduled for maintenance

MDPSO MS-MDPSO

27 19 17,20

28 19,20 17,19

29 16 17,19

30 16 -

31 16 14

32 16 14

33 16 14

34 16 14

35 – 14

36 17 –

37 17 21

38 17 21

39 14 21

40 14 21

41 14 18

42 14 16

43 14 16

44 21 16

45 18,21 16

46 21 16

47 21 16

48 15 15

49 15 15

50 15 15

51 15 15

52 15 15



Table A3
Typical generator maintenance schedules obtained by MDPSO-b and MS-MDPSO-b for the Nigerian power system.

Week no. Generating units scheduled for maintenance Week no. Generating units scheduled for maintenance

MDPSO-b MS-MDPSO-b MDPSO-b MS-MDPSO-b

1 3,11,12,16 3,7,9,13,16 27 18,26,39 21,26,27,29,30

2 3,9,11,12,16 3,7,9,13,16 28 18,26,39 19,26,27,29,30

3 3,6,9,15,16 3,5,12,13,16 29 18,23,29 19,26,29,30

4 3,6,15,16 3,5,12,13,16 30 23,29,40 19,24,36

5 1,3,15 3,6 31 23,27,29,40 19,24,28,36

6 1,7,8,13,15 1,6 32 22,23,27,40 24,28,36

7 1,7,8,13,14 1,8,10 33 22,27,40 24,28,31,36

8 1,2,13,14 1,8,10 34 22,40 31,36,37

9 1,2,13,14 1,2 35 22,34,36,38 18,31,37,38

10 2,10,14 1,2,14,15 36 34,36,38 18,31,37,38

11 2,10 2,11,14,15 37 32,36,38 18,37,38

12 2,5 2,11,14,15 38 32,36,38 18,37,38

13 4,5 2,4,14,15 39 20,25,36,37 39,40

14 4,17 4,17 40 20,24,25,37 39,40

15 4,17 4,17 41 20,24,25,37 35,39,40

16 4,17 4,17 42 20,24,25,37 35,39,40

17 4,17 4,17 43 24,37 39,40

18 19,30,35 22,25,32 44 47,49 42,43,48

19 19,30,35 22,25,32 45 47,49 42,43,46,48

20 19,21,28,30,31 20,22,23,25 46 47,49 46,48

21 19,21,28,30,31 20,22,23,25 47 43,47,49 41,46,48

22 21,28,31,33 20,23 48 42,43,46 41,44,46

23 21,33 20,23 49 42,45,46,48 44,45,46,47,49

24 39 21,33 50 45,46,4 45,47,49

25 39 21,33,34 51 41,44,45,46,48 45,47,49

26 18,26,39 21,27,30,34 52 41,44,45,48 45,47,49

Table A2
Typical generator maintenance schedules obtained by MDPSO-a and MS-MDPSO-a for the Nigerian power system.

Week no. Generating units scheduled for maintenance Week no. Generating units scheduled for maintenance

MDPSO-a MS-MDPSO-a MDPSO-a MS-MDPSO-a

1 1,9,11,17 1,4,15 27 26,31,32,33 20,22,27,29

2 1,9,11,14,16,17 1,4,15 28 26,32 20,22,27,34

3 1,3,14,16,17 1,4,15 29 22,26 20,22,27,34

4 1,3,16,17 1,4,15 30 22,26 34,35

5 1,3,10,16 1,4,16 31 19,22,24,38 32,34,35

6 3,4,10 3,5,16 32 19,22,24,38 32,37

7 3,4 3,5,16 33 19,24,27 32,37

8 2,4 3,5,16 34 19,24,27 25,33

9 2,4,7 3,5 35 27 25,33

10 2,4,7,8 3,5 36 27 25,33,40

11 2,6,8,12 2,8,10,11,14 37 35 25,33,40

12 2,6,12 2,8,10,11,14 38 21,30,35 36,40

13 5,6,15 2,6 39 21,30 36,40

14 5,6,15 2,6,17 40 21,25,30,34 23,26,40

15 5,6,15 2,6,17 41 21,25,34 23,26

16 5,13,15 6,7,9,12,13,17 42 25,34,37 23,26

17 5,13 6,7,9,12,13,17 43 25,34,37 23,26

18 20,23,29,39 18,19,21,39 44 48,49 47,48

19 20,23,29,39 18,19,21,39 45 44,48,49 44,47,48

20 18,20,23,29,39 18,19,21,39 46 44,48,49 44,47,48

21 18,20,23,28,39 18,19,21,30,39 47 41,48,49 41,47,48

22 18,28,36,39,40 24,30,39 48 41,43 41,42

23 18,28,36,40 24,28,30,38 49 43,45,46,47 42,45,46,49

24 28,33,40 24,28,31,38 50 45,46,47 45,46,49

25 31,33,40 24,28,29,31 51 42,45,46,47 43,45,46,49

26 31,32,33,40 20,22,27,28,29,31 52 42,45,46,47 43,45,46,49
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