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Decentralized Asynchronous Learning in Cellular
Neural Networks
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Abstract—Cellular neural networks (CNNs) described in liter-  different cells to each other is application dependent,sas i
ature so far consist of identical units called cells connected to shown in application to bus voltage prediction in a power
their adjace_nt neighbors. These cells interact with ea_lch other_ in system [13]. However, even with variations, most of the CNNs
order to fulfill a common goal. The current methods involved in - . . . o
learning of CNNs are usually centralized (cells are trained in one studied so far (,:O”s,'St of |dentlcal units in each cell of the
location) and synchronous (all cells are trained simultaneously CNN and learning is centralized and synchronous - neural
either sequentially or in parallel depending on the available networks (NN) in each cell of the CSRN or CMLP are trained
hardware/software platform). In this paper, a generic architecure simultaneously in one location.

of CNN is presented and a special case of supervised learning has ., . . g .
been demonstrated explaining the internal components of a cell. A Distributed learning of artificial systems has been of iesser

decentralized asynchronous leaming (DAL) framework for CNN  for @ long time in the research community. Many approaches
is developed in which each cell of the CNN learns in a spatially have focused on either data decomposition or task decompo-

and temporally distributed environment. An application of DAL  sjtion methods to achieve parallelism by distributing agon
framework is demonstrated by developing a CNN based wide multiple processors [14]-[18]. Use of distributed learnin

area monitoring system for power systems. The results obtained . . . . .
are compared against equivalent traditional methods and shown computational intelligence (Cl) and machine learning (ML)

to be better in terms of accuracy and speed. paradigms has also been reported in literature [14], [24]].[
. . Although distributed learning methods capture the essefce
Index Terms—CNN, Decentralized asynchronous learning,

high performance computer, multilayer perceptron, power sys- decgntrallzed computing t_)y reducing the V?'“me Of_ infor-
tems, PSO, SRN, wide area monitoring mation shared by performing local computations at differen
‘nodes’, the approaches either consist of a ‘master’ making
decisions based on information from the rest of the nodes
in the network [21], or the nodes being centrally located
T Wo major variations of cellular neural networks (CNNsjn one place and synchronized by a global clock. Learning
have been studied in the neural networks communityyay be carried out sequentially or in parallel by exploiting
CNN introduced by Chua and Yang in 1988 [1] consists @heir inherent parallelism using a parallel computing folan.
individual units (cells) connected to each of its neighbmisa  However, all of the nodes or cells are updated simultangousl
cellular structure. Each cell of such a CNN is a Computalionﬁt)r any Change in the system and hence |earning is not inde-
unit and have been applied to pattern recognition [2], [$lendent among the cells. As such, most current approaches,
and image processing [4], [5]. CNN is a highly non-lineagven though distributed, carry out centralized synchrsnou

system and its stability is important for real applicationsearning regardless of the hardware/software platforna fise
Multistability of such CNNs is discussed in [6]. In [7], Wer®  jmplementing them.

introduced a cellular implementation of simultaneous nesmnt
neural networks (SRNs), where each ‘cell’ is an SRN with ) ) )
same set of weights but different set of inputs. Such a CNN1) A generic framework of CNN is presented and a special
consisting of SRNs as cells are called Cellular SRN (CSRN) _ case of supervised learning has been demonstrated.
and that containing multilayer perceptron (MLP) as cells ar 2) A decentralized asynchronous learning (DAL) frame-
called Cellular MLP (CMLP). CSRNs have been used in maze ~ WOrk for CNN has been developed and implemented on
navigation problem [8], [9], facial recognition [10] and age a heterogeneous CNN. _

processing [11]. Stability of recurrent neural networkgtie ~ 3) CNN with DAL framework has been implemented as
presence of noise and time delays is discussed in [12]. Thus, & Wide area monitoring system (WAMS) for power
[6] and [12] together provide a basis for stability of such _ SyStems. , _

CNNSs containing neural networks in each of its cells. In the 4) It is shown that multiple neural networks of different
original CNN, each cell is connected only to its adjacent  CellS of @ CNN can each, concurrently, learn information
cells [1]. However, in CMLP and CSRN, the connection of ~ €Mbedded in data obtained from a complex system.

. . _ , The remaining sections of the paper are arranged as follows:

Bipul Luitel and Ganesh K Venayagamoorthy are with Real-Tinogvét Archi f CNN i d in Secti L . f
and Intelligent Systems Laboratory, Department of Eledtrimad Com- rc '_teCture 0 h 1S prgsentg n ?Ct'on - Learning o
puter Engineering, Clemson University, Clemson, SC, 2963A.Wntact: learning systems is explained in Section Ill. Development
lan‘FEEL:‘L(%(;?r?ge.?)rr?)’\/%lfeucims;@t)rl\?ee?\l‘gtr%nal Science FoundationAUfider of proposed DAL for heterogeneous CNN ‘is explained in
the CAREER grant ECCS #1231820 and EFRI #1238097 is gritefuSection IV. Development of WAMS based on CNN with

acknowledged. DAL is presented in Section V. Case studies with results and

I. INTRODUCTION

The major contributions of this paper are as follows:
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architecture, size and learning method. It is said to be

heterogeneous if one or more of the cells have different
<: Generic architecture, size or learning method.
I:: Cell 3) Synchronous Vs. asynchronous: A CNN learning is
said to besynchronous if adaptation takes place con-
9 T currently on all the cells. It is said to besynchronous
if individual cells learn and adapt at different times and
P oL do not depend on a global or a ‘master’ clock for the
learning.
I:D ComputationallUinit 4) Se.quential VS. pavl"allleli A CNN impI_ementation i§
said to besequential if it takes place in a sequential
| computing environment using a sequential algorithm. It
——————— is said to beparallel if it takes place in a distributed
environment using parallel computing on suitable hard-
<] — : ::I ware/software platform.
Communication Unit Fig. 2 shows different variations of CNN in terms of forma-
¥ {—} tion, structure, learning and implementation. Any combora

of these variants can form a different type of CNN. For
example, CNN developed for one of the case studies in this
paper (Test System Il) has a decentralized formation, bgéer
neous structure, heterogeneous learning method, asyrmaso

discussion are presented in Section VI, and conclusions a@aptation and is implemented in parallel.

Fig. 1. Internal units of a generic cell in a CNN.

given in Section VII. Sometimes ‘decentralized’ and ‘distributed’ are inte rodpe
ably used in literature. The word ‘distributed’ is, however
Il. CELLULAR NEURAL NETWORKS contextual and can mean task, data or temporal distribution

. . . in parallel computing environment, or spatial distribatié-or
A generic architecture of a CNN consists of cells Connea%?arity the word ‘decentralized’ henceforth is used enifl

to each other n some.fash|on. I'n this .study, each cell C.tms.'§o imply spatial distribution and ‘distributed’ is used ihet
of a comp_utatlonal unit, a learning unit and_ a communication, o' of parallel computing. Synchronized, centralized
unit. This is shown in Fig. 1. The computational unlt/emne%equential learning techniques for individual or netwdrke

can be qp?.ropriefltely chfosen fo(r:ldiﬁeredqt appli_cli';mtti)onst; b ellular or population based) systems have been studidd an
some variation of one of many paradigms will be mor plied to a wide variety of problems using Cl paradigms.

Sltj.:Fablﬁ]' -.”}e pu:pose 0.{ the tcc.JtmpltJ;atuzjr.\al ttlalet::rent r:s \Sé)ith the development of advanced hardware/software plat-
utilize the information avarable tol (either directly Gmoug forms and parallel computing tools, distributed learningtim

Its |ntera<_:t|on with the neighbors) to pro_duce an out_p_ut 'Bds have also been developed and applied. However, to the
orq_er to Improve the pe_rformarlce over time. The ability Best of authors’ knowledge, there has not been any subtanti
.Utll'ze gathered mformapon for improving one s perfomea .study in the CI or ML community in the area of decentralized
is also known as experience and is facilitated by the Iegrnlna ming of networked, let alone heterogeneous, learnjsg s
unit. The leaming unit can have supervised, unsupervis ciws. The challenge 'here is that each individu,al or member

or reinforcement based learning and provides a measure e system is a learning sub-system in itself and is direct

evaluation of performance based on which a cell can Improyg ;. indirectly related to the knowledge and experierice o

'tsﬁlf'bsmtc.e tr|1e mc_hwduali mteraﬁt with t.her:L neh|gh30n A the member(s) in its surrounding. In most real-life protdem
collaborative learning system (where neighborhood may ere each cell implements a nonlinear function, the change

defined based on certain parameters which are apphcatmqhe input is nonlinear which results in a nonlinear chaimge

dﬁpend_entt,hfor example electncal_ dlitance _|tn_the| apjmieat the output. This complex and iterative information deperge
shown in this paper), a communication unit is aiso Preseff e ay input/output behavior combined with the ability
in the cell. This unit consist of input/output interface fo

fo learn asynchronously poses even greater challenge in the

sending FO gnd receiving from ot_her cells in the newVorlfearning of such systems. This is known as learning of learni
Communication takes place according to a predefined ruke WEystems (LOLS)

as many neighbors as is required by the application.
CNN architecture and learning can be classified as follows:

1) Centralized vs. decentralized: A CNN formation is
said to becentralized if all the cells are located in  Learning of learning systems is a social behavior of swarms
one physical location. It is said to bkcentralized if where each individual learns at different pace, at differen
cells are spatially distributed across different physicéilmes and in different environment while still interacting
locations (like in grid computing). with the other individuals of the society. This behavior is

2) Homogeneous VS. heterogeneous: A CNN structure is comparable to students performing certain projects intaafir
said to behomogeneous if all the cells have identical classroom in which distant students learn at their own pace,

IIl. L EARNING OFLEARNING SYSTEMS
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CNN

Formation Implementation (Hardware/software)
Centralized ‘ ‘ Decentralized | Parallel Sequential

Structure: architecture and size Learning or adaptation

Learning
Adaptation
Homogeneous Heterogeneous Method P
I
v v
Homogeneous Heterogeneous
Synchronous Asynchronous

Fig. 2. CNN variants - structure and implementation.

their own environment at different times while still workin

on a common objective. For the same reason, decentralized
learning has developed as an instructional paradigm in the
field of distance education where both synchronous as well
as asynchronous learning methods are utilized [22]. In a
collaborative distributed learning [23], learning occtireough
communication and collaborative interactions. In [24]- Sa
lomon and Perkins have pointed out that learning involvek bo
cognitive as well as social aspects. They have also pointed
that a social entity can itself be identified as a learnindesyis
where collective outcome of the system as a whole is more
important than one or more individuals’ output. Learning
in an artificial system having spatially distributed intetiag
individuals is the major focus of LOLS.

Consider a generic system consisting of different intercon
nected subsystems as shown in Fig. 3. The output of any
subsystem connected f§ neighboring subsystems as part of
the LOLS can be represented by (1):

Environment

Oss; (k) f(@iOss,(k —1),0, 0551 (k= 1),...,

Q,J:/OSsﬁl (k? — 1), KS“ KDl)

les (K O (k+1)
[ i
@)

b
whereq is the discount factor associated with each subsystem. )
For any subsystem, the discount factor affects the amountFisf: 3. (a) A system of interconnected subsystems in the ebofel OLS.
influence of its own past experience or the knowledge of i@Each subsystem in a LOLS showing its output as a functfatsanputs.
neighbors in its future decisions. The output of each subays
might also be governed by other static and dynamic parameter
associated with the subsystem, which are representédSas ecosystem. The learning is decentralized because thadndiv
and K D; in the equation. In the proposed DAL frameworlals (cells) can be spatially distributed and communicat&aoe
for CNN, each cell learns in its own location based on itsformation with only a few neighbors of interest. The leam
own inputs and the information obtained from its connettivi is asynchronous because it can be temporally distributed
with the neighbors. The objective of the learning is to inygro among the individuals (cells). That means, in decentrdlize
the overall output of the whole system and not just one asynchronous learning in a heterogeneous CNN, different
few individuals of the group, which closely resembles thigpes of cells can learn at different times as deemed negessa
cognitive and social learning aspects of swarms in a bioldgi depending on availability of information and deviationrfrats
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current output from the desired. At each location, the liegrn » = 3
can be either sequential or parallel. Thus, a DAL framework l!’!/‘rm
for CNN also represents a learning of learning systems. 7

1

IV. DECENTRALIZED ASYNCHRONOUSLEARNING

When the size of the network grows, or the parameters of
one or more components of the network change, then the ]’]’/
input/output behavior of the overall network changes. That
means, in a centralized CNN implementation of a networkeigj
system, any change in one or more nodes in the systé
will require a change in the architecture of the entire CNN
representing the network. Also, a synchronized learningime
anism will require all of the nodes to update themselves
simultaneously to learn the new change introduced in one or

more parts of the network, although not all of the cells may
be affected by the change. At the hardware level, this trans-
lates into more processing, memory and power consumption
Therefore, a DAL framework for CNN is developed which

allows for dynamic changes to the network topology without el el

affecting the operation of the CNN. The learning unit in each

cell quickly captures any change in the network topology &#9. 4. Asynchronous propagation of knowledge across theark in a
. . DAL framework.

parameters affecting the cell and updates the computationa

unit to reflect the changes. This takes place at each affeeted

asynchronously. There are both cognitive and social aspect e Computatonal URi

Celllll Cell IV

QK+

of learning in DAL. The cognitive learning takes place when Ui Gomputstonsl

parameters directly affecting the cell change and the cqnlgk) oot

has to update itself to reflect the change. This new acquired o | Buffer

knowledge is then transferred to the other members of the /

network (neighboring cells) through the communicationt.uni 3

As a result, the neighbors observe a change in the behavior,| [Byame S T LamingUni Em]
and update themselves. The new knowledge acquired by one| | “bia: | |  |ccmesaionsl 7 Buffer
cell thus propagates through the network which results in | a2t —

o

()

ARE

social learning. In Fig. 4, propagation of knowledge across
the network is shown with a typical example of four cells.
Each column represents the change beginning at four differe
cells while the rows represent the propagation of the change Dynamic o I
across the network over time (samples). It shows how the CNN Database Else T=0 Uz [¢—ARE,
transitions from one state to the other asynchronously when
a change occurs at any one of the cells. If the change in tfig. 5. Implementation of a cell for asynchronous learning.
input causes significant change in the output, then theilegrn
unit will activate. This happens at every cell in the network
thus leading to a ripple of changes. This leads the netwoek to ~ data is used to update tieynamic database after each
new state of knowledge whenever a change is introduced in the Window. The size of this buffer determines how often
network. Therefore, DAL framework supports addition ofigel ~ the historical data is updated.
to the network. A centralized implementation is vulneraiole ~ * SendList - A list of neighbors to which each cell has to
attacks but DAL framework makes a CNN fault-tolerant and ~ send its output.
scalable. e RecvList - A list of neighbors from which each cell has
Implementation of DAL in a cell is explained in the follow- ~ to receive its input.
ing paragraphs with reference to the structure of a cell show Each cell maintains its owiynamic database which is
in Fig. 5. The following terms are introduced with respect tapdated after each indow with new data received within that
DAL: period and stored iDyanamic database buf fer. The con-
e Dynamic database - A buffer of historical data (inputs tents of theDynamic database are shifted by théVindow
and target values) used by the learning unit to train tleize and the remaining data is filled by the content of the

NN. Dynamic database buf fer. This way the historical data is
o Window - The interval at which théatabase is updated kept current. After a step-ahead prediction is calculatetiea
with new data. outputO(k) from its input at instank , (I(k)), it is compared

o Dynamic database buf fer - A buffer of data received with its target from previous time instaht- 1, which isO(k),
by the communication unit during th8&indow. This and an absolute relative error (ARE) is calculated accgrdin
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to (2) as the measure of fitness of learning. The ARE may béectrical distance between the generators and is measured
taken over one or more steps, in which case it is stored based on the length of the transmission lines separating the
the error buffer and accumulated in order to take an averag@o generators. In this study, two nearest neighbars=(2)
If the error is greater than a predetermined threshbRIF;,, are considered for designing the CNN. For example in the
then a trigger 1) is activated according to (3). This triggersTest System | (Fig. 7), two nearest neighbors of gener@tor
the learning unit and the parameters of the computatiorse generator&2 andG4. This is represented in the CNN by
element(weights of NN if the computational element is a NNJonnecting the outputs of the cell$2 and C4 to the inputs
are adjusted according to the learning algorithm. Thus an the cell C'1. Similarly for G4, two nearest neighbors are
asynchronous online learning takes place at each cell. DAY2 and G3 and hence outputs of the celds2 and C'3 are
framework in Fig. 5 presents a scenario for supervised liegrn connected to the inputs of the céll4. This topology allows
where a predefined target is required. Therefore, “Targdtir the scalability of the CNN by keeping the size of the
shown in the figure is a buffer for holding the target valuedN in each cell to a minimum. However, for Test System
O(k). In the application described in this paper, the target ik (Fig. 8(a)), a complete connectivity of the system is not
generator speed deviation. Since generator speed deviatioobtained by only considering nearest-2 neighbors betwleen t
also one of the inputs to the cell, the target is a step-ahegeherators, as is shown in Fig. 8(b). To avoid forming istand
(time shifted) values of that input. The learning in eacH cebn a large power system, nearest generators in adjacemdssla
of a CNN with DAL is shown in flowchart of Fig. 6. are connected in Phase Il in order to obtain a CNN structure
as shown in Fig. 8(c). Due to the extra connections in some

[On (k) — On (k)|
ARE, (k) Ol (2)
{1 If ARE > ARE, @
0 Otherwise Dynalir::iIEIZaetYaEasgybuﬁer
Wy =0;
Dynamic database buffer size

V. DEVELOPMENT OFWAMS BASED ONCNN wiITH DAL Output buffer

Error buffer

Power system consists of components and phenomena as-
sociated with them that have complex dynamic behavior. Such
components such as generators and phenomena such as power Continue?
flows can be represented by differential algebraic equation
(DAES) [25]. Since neural networks can be effectively used t
learn the output of such DAESs, they can be a very suitable tool Communication unit
for modeling and monitoring the behavior of power system receives input data Wia=0
components and phenomena. A WAMS is used to assess the |
status of various components of a power system for providing Insert input (,(k)) in
predictive control. In future power systems (smart gridis window buffer W
number of such components will be very large and hence $ No Ve
it becomes challenging to perform accurate predictiveestat Increment Wid, Is Wy >
estimation using WAMS in a reasonable amount of time [26]. Wig = Wig + 1 We?
Therefore, a WAMS based on CNN with DAL is proposed. V‘[/ {

The proposed CNN consists of neural networks in each cell | Calculate output from Put in output buffer,
and closely relates to the Object Net approach described in computational unit On(k +1)
[27], [28]. These cells may be homogeneous having similar J,
types and sizes of neural networks or heterogeneous deyendi Calculate and accumulatg: Shift the dynamic ||
on the type of application. Each cell of the CNN is used to error database by W
predict the speed deviation of one generator in the power
system. The architecture of CNN is developed such that it Is ARE >
exactly represents the physical structure of the poweesyst ARE\‘(? _

This is done in two phases. In Phase |, the cells are connected Yes. T2 2 .

. . Use dynamic database t Update dynamic
to each other based on ‘nearesteighbors’ topology, which train “mirror of the database with new dat
means previous sample outputsrohearest neighbors of each computational element” from dynamic database
cell are connected to the inputs of that cell. The number and update its parameterf buffer and target
should be picked such that it is less than the total number 5

. . ownload the new
of cells (V), but also ensuring that the connectivity of the R parameters to the
network is not lost. This is better understood by referring computational element

to the applications presented in the paper. In the proposed
application, the “nearness” of components is defined as thig 6. Flowchartillustrating learning of a cell (Fig. 5) @CNN.
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Fig. 7. CNN based WAM for a two-area four-machine system (Egstem
).

(b) —

of the cells due to Phase Il connection, a heterogeneous CNN ;=447 ’ﬂ(ﬂ __)D H
is developed. In this paper, a WAMS based on CNN W|th . ,:é P

DAL is developed to predict the speed deviatiomsw of Shs N
each generator in the multimachine power system at mstam

k + 1 based on speed deviationd«) and deviation of the “[®] [ Eﬂ(
reference voltageXVref) (shown in Fig. 9) of the generators s U el ) i} i
at instantk as the inputs.

For Test System |, the computational unit in each cellisan J
MLP. Each MLP is a time-delayed neural network (TDNN) | =" |
with an input layer of six neurons, a hidden layer of eight - >ﬂ< ---------- i H
neurons and an output layer of a single neuron. Each c R S— ______ ’ T

consists of six inputs viz. actual reference voltage applce )

the generato\Vref(k), current and time-delayed values ofF . (a) New York-New England 16-generator 68-bus systesed as
the actual speed deviation of the generatan(k), Aw(k — Test System IIl. (b) CNN implementation in Phase | shown on topa of
1), Aw(k—2) and the predicted speed deviations of the neardgt background of the Test System. (c) Implementation in @lashowing

two generators,Awnl( ) and Awng(k). For Test System complete connectivity through heterogeneous CNN.
Il, the cells connected to two nearest neighbors have their
computation unit implemented using MLPs where as those
with more than two nearest neighbors (cells participatimg i
inter-island connectivity of Phase Il) are implementedngsi
SRNs in order to capture the new dynamics. The number of sK;

neurons in the input, hidden and context layer of SRN is 1#Tr
dependent on the number of neighbors each cell is connected Vi
to. Unlike MLPs, the inputs to the SRN consist of only current| 1 14T, | | _Ka /lpie,d
values of the the inputs i.eAVref(k), Aw(k), Awn(k), 1+sT, 1+sT, 14sT,
Vimin

Awia(k) and Aw;,3(k). The computational unit in each cell (PRBS | o o (PSS
of the CNN is a neural network and is independently trained

by the learning unit. The CNN presented here is heterogeneeiy. 9. Generator excitation system (showia\d/ref).
in terms of both computational as well as learning unit. s th

study, the learning unit of the cells whose computationa un
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is an MLP uses backpropagation (BP) and that of cells whosefor n = 1 to N do

computational unit is an SRN uses particle swarm optinorati
(PSO) [29] to train it. PSO has been shown to be effective in
training of neural networks [29]-[31]. Since training of S&

if SendList(n) == 1then
Send output taell,, using M PI_send.
end if

is a challenging task, PSO has been used to train them. For if RecvList(n) == 1then

every sample of the input dafdk), each cell produces a step-

Receive input fromCell,, using M PI_recv.

ahead predicted outpal(k+1). Therefore, for any input data end if
of size1,2,...,k,..., K discrete samples, and’,, and V,, end for
be the input and output weight matrices respectively of the
SRN innt" cell, then the output of each cell is given by (4). VI. RESULTS AND DISCUSSIONS
A. Test Systems | and Il
Oy (k) Adoy (k) A stream of data used for this study is obtained by simula-
f(Iu(k = 1), Wy (k), Vi (E)) (4) tion of the test systems in real-time digital simulator (RE)D

[32]. Since RTDS operates in real-time, it gives a more stiali

Considering the case of two nearest neighbors, the inp@dveGepresentation of an actual system. A pseudo-random binary

for any cell will be:

In(k) =

[AVrefn(k), Awn(k), Awy (k — 1),
A (k — 2), Ao (B), Ao (R)] (5)

The predicted speed deviations can be written as:

AGy (k +1)

A (k + 1)

Ady(k +1)

Aly(k+1)

f Wi(k), Vi(k), AVrefi(k),
Awl(k — 2), Awl(k — 1), Aw1 (k’),
Ay (k), Ads(k)) (6)

[ (Wa(k), Va(k), AVrefa(k),
Awg(kj — 2), A(Ug(k — 1), ALUQ(]C),
Al (), Ady (k) (@)

f(Ws(k), Vs(k), AVre f3(k),
AW3(1€ — 2), AW3(k‘ — 1), Aw;g(k‘),
Ay (k), Awy(k)) 8)

f(Wa(k), Va(k), AVrefa(k),
AW4(1€ — 2), AW4(1€ — 1), A(.U4(k),
Az (k), Aws(k)) €)

signal (PRBS) applied to the excitation system of the geoera
causes a change in the reference voltige f which causes
the speed deviation in the generators. Perturbation isdased
on generators each time and 10 seconds of data at 100 Hz
collected for each PRBS applied to additional generatousTh
a 40 seconds of data is used as the input stream to the CNN.
Output of each cell is a step ahead prediction of the inpwd dat
corresponding to each generator of the test system. Theitoutp
of the CNN plotted against the actual signal is shown in Big.1
The proposed DAL framework for CNN consists of many
variables that can be customized based on applicationseThe
variables are parameters associated with learning metegds
learning gain, momentum gain, iterations, population ,size
acceleration constants, error threshold), computatiométis
(eg. number or neurons in different layers) and the DAL
framework (eg. neighborhood size, database and buffe}. size
Table 1l lists those variables/parameters and their valisesl
in the application described in the paper. The values can be
considered as a starting point in any future applications bu
are not claimed as optimal.

Test System Il is represented by a CNN consisting of 16
cells each predicting the speed deviation of one generator i
the system. The output of the CNN are shown in Fig.11.

B. Discussion

1) Asynchronous learningAsynchronous behavior in CNN
learning is as a result of learning unit trigger shown in (3).
The cell undergoes weight updates using the historical data
from Dynamic database only whenT = 1. Fig. 12 is the

~ In order to simulate a decentralized operation, the CNN ot of the trigger vectorT” over the training duration. The
implemented on a parallel computer where each cell residesgot shows the asynchronous learning during implementatio
a separate processor and communicates to its neighboes (ogf Test System | where different cells are learning at déffer

processors) using message passing interface (MPI). Edich gges depending on their performance. The x-axis shows the
maintains aSendList and aRecvList and usesV PI_send

and M PI_recv commands to send/receive the data between
the neighbors. For a CNN withV cells, SendList and
RecvList are N length vectors with a value of ‘1" in the

TABLE |

SendList AND RecvList OF FOUR CELLS FORTEST SYSTEM |

column representing its nearest neighbors or a value of ‘0’ SendList RecvList

otherwise. For Test System |, theendList and RecvList ol é ”1 ”g 'VO (') ”1 ”B 'Vl
are shown in Table |. The two matrices will be transpose of Celll T1T 0 1 111 0 0 1
each other. The communication protocol for each cell isrgive Cellll [O 0 0 10 1T 0 1
in the pseudocode. Celliv]j1l 1 1 O0J]O0 1 1 0
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Fig.

Actual
Predicted

10. Output of the CNN for Test System I.
TABLE Il

PARAMETERS USED FOR TRAINING A CELL OFCNN.
Learning Gain 0.005
Momentum Gain 0.001
Number of PSO iterations 1000
Cognitive acceleration constant; () 2
Social acceleration constantz) 2
Momentum ¢v) (Linearly) 0.9 to 0.4
Database size 1000
Window size 100
Error threshold ARF:) 5%
Case l:n-neighbors 2
Casel: Learning method BP
MLP (Test System 1) 6x8x1
Case Il:n-neighbors 2,3,4
MLP (Test System II) 6x8x1
SRN (Test System I, Cell 1,2,3,4,14,16)  13x8x1
SRN (Test System I, Cell 10, 12) 14x8x1
Dynamic database buf fer 100
Dynamic database 1000

8(1)15 8(01 a 8(1)13 8(012 8(011 8(010 80)9 8(08 8@7 80)6 8(1)5 80)4 8033 80)2 80)1

By

Fig.

progress in time. For each cell shown on each row in y-
axis, the shaded part in x-axis corresponds to the time whigiesholds and comparison of its performance in training
each cell learnsZ{ = 1) and the white spaces represent tha@s Well as testing to come to a fair conclusion regarding
times when it does not (because of its predictions beingimithSpeed/accuracy tradeoff in asynchronous learning.

2) Knowledge retention:The CNN trained using DAL
asynchronous learning of the cells of Test System Il in DAframework is used to test the simulation data obtained from
framework. The MLP and SRN cells are distinguished by dif 10-cycle 3-phase to ground fault on bus 8 of Test System
ferent shades, and rows 1, 2, 3, 4, 10, 12, 14 and 16 correspanthen a Prony analysis [33] is carried out on the predicted
to the SRN learning. For Test System |, asynchronous legrnioutputs of the CNN as well as the actual data. In Table lll,
takes271 seconds as opposed 1® minutes for synchronous the natural frequenciesvfy) and damping ratios({ obtained
learning. Average mean squared errors (MSEs) between fhmm the Prony analysis of the actual and the predicted &gna
actual and the predicted outputs of all the cells duringrtgst are presented along with error&y and E({) between the

on CNNs trained using synchronous (asynchronous) learniactual and the predicted. The results show that the dominant

the expected threshold,; = 0). Similarly, Fig.13 shows the

is 19.4 (12.97). The result is rather surprising and impted

Actual
i Predicted
0 ~ ]

|
O MNMMNOMNMMNON NON NOMNMNMNMNOMNMNOMNN O NN O NN O NN O NN O N NON NONNON
>
!
o
&
/ L

10 11 12 13 14 Tin}g(s) 16 17 18 19

11. Output of the CNN for generators in Test System |I.

inter-area and intra-area frequency modes present in therpo

updating the neural network weights on every sample of inpsystem are also captured by CNN within less than 2% error
is not the ideal way to train it, and may in fact deteriorate iin natural frequency and less than 4% error in damping ratio.
performance in a connected network like the CNN. While tHa Table IV, Prony analysis performed on the training data
observations show obvious benefits of asynchronous legarnbtained after different learning duration has been ptesen

in terms of speed, the paper does not claim that a thresholdTtfe data presented shows that some frequency modes are
5% for triggering the learning unit is optimal. It require®ra extracted early on but some frequency modes are either
in-depth research into the weight update pattern with diffe  not present or not accurate, which improves over time. For
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Fig. 12. Asynchronous learning of cells in the CNN. The shlapgertion of the figure represents when each cell’s learnimgwas triggered.

Cell 1 | H. .
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Fig. 13. Asynchronous learning of 16 cells in the CNN implermanfTest System Il. The shaded portion of the figure represehen each cell’s learning
unit was triggered. Darker shades represent the cells impletieising SRN and lighter shades represent those implemaesitegl MLP.

TABLE Il . .
NATURAL FREQUENCIES(wy) AND DAMPING RATIOS (¢) oBTAINED wiTH (71 €an be obtained using (6), (7) and (9) as follows:

PRONY ANALYSIS OF THE CNN OUTPUT COMPARED WITH ACTUAL

SIGNAL.
A o edie I Awi(k+1) = f(Wi(k), Vi(k),AVrefi(k), Awr(k — 2),
ctua redicte rror %
N ¢ W ¢ Ewn EC AWl(ki 1)7Awl(k)aAV7'€f2(k7 1),
o, Model 06023 01489 06035 01476 01992 013 Aws(k — 3), Aws(k — 2), Aws(k — 1),
Mode 2 1.2075 0.1623 1.2026 0.1521 0.4058 1.02
o, Model 06023 01504 06039 01622 0265/ 118 AVrefy(k —1), Awy(k — 3), Awys(k —2),
Mode 2 1.2482 0.1424 1.2298 0.1363 14741 0.61
o3 Mode1 06036 01491 06059 01486 0381 005 Aws(k —1), Awz(k — 1)) (10)

Mode 2 1.251  0.1483 1.2311 0.1517 1.5907 0.34 ) : ;
Mode 1T 06036 01481 06051 01474 02485 Thus, MLP equivalent of a cell has 13 inputs. Using 20

G4 Mode2 12196 01463 1233 01802 1.0987 3.3chidden neurons and one output, the performance of MLP can
be equivalently compared with each cell of a CNN. It is not
claimed that the number of inputs to the equivalent MLP are
the intra-area frequency modes in the Test System |, Thptimal, but in order to capture the inter-area and inteaar
minimum errors in natural frequency modes are obtained affeequency modes in the power system, all the information
40 seconds of training, which is the complete set of data usadhilable to each cell in CNN is also made available to the
for Test System |. These result showing extraction of fregye equivalent MLP. Test Case | is implemented on the MLP
modes from the output of CNN validates that a CNN has tregjuivalent of the CNN and tested using 10-cycle 3-phase
ability to extract ‘information’ from ‘data’ based on cogime line to ground fault data. Coefficient of determinatioR?}
and social learning. is used to show the goodness of fit between the actual and
3) Performance comparisorin this study,n-nearest neigh- the predicted signalsRk? is a statistical measure of how
bor topology has been used for developing the CNN whewneell the regression line approximates the real data pofats.
predicted time delayed signals from the neighbors have beBn of 1.0 indicates that the regression line perfectly fits the
used as inputs to each cell. For Test System |, if the samata. Fig. 14 shows the comparison®t between the actual
topology is to be implemented on an MLP, four time-delayespeed deviations of four generators and their predictedesgal
neural networks can be obtained by combining (6) to (9) amdbtained from CNN and its MLP equivalent. It shows that
replacing the predicted outputs with time delayed values bigher values of?? are obtained for predictions with CNN as
the actual signal. For example, output of MLP for generataompared to those with MLP. Comparison of MSEs between
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TABLE IV
EVOLUTION OF LEARNING IN EACH CELL OVER TIME.
G1 G2 G3 G4
Mode1l Mode2 Model Mode2 Model Mode2 Model Mode 2
wN 0.6023 1.2075 0.6023 1.2482 0.6036 1.251 0.6036 1.2196

wn : 10s 0.6042 1.2127 0.6052 1.2132 0.6044 1.2271 0.6034 1.2635
wy : 16s 0.603 1.188 0.6025 1.1745 0.6037 - 0.605 1.2707

wn 225 0.6025 1.1879 0.6009 1.2211 0.6029 1.1956 0.6049 1.272

wn : 28s 0.6035 1.1935 0.6041 1.1808 0.6033 1.1636 0.6047 1.2598
wn @ 34s 0.6034 1.1931 0.6028 1.1898 0.6025 1.1873 0.6042 1.2615
wy : 40s 0.6035 1.2026 0.6039 1.2298 0.6059 1.2311 0.6051 1.233

Fwy :10s  0.3155 0.43064  0.4815 2.804 0.1325 1.9104 0.0331 3.5995
Fwy :16s  0.1162 3.6853 0.0332 5.9045 0.0166 - 0.2319 4.1899
Fwy :22s  0.0332 1.6231 0.2324 2.1711 0.1160 4.4284 0.2153 4.2965
Fwy :28s  0.1992 1.1594 0.2988 5.3997 0.0497 6.9864 0.1822 3.2962
Fwy :34s  0.1826 1.1925 0.0830 4.6787 0.1822 5.0919 0.0994 3.4355
Fwy :40s  0.1992 0.4058 0.2656 14741 0.381 15907 0.2485  1.0987

|

o — heterogeneous with some of the cells consisting of differen
B ccuivalent MLP| || | number of inputs, different type of computational and |&zgn

— units. These heterogeneity in size of the cells was a result
of increased number of connections in certain cells in order
to capture the system topology. However, the heterogeneity
in architecture and learning was a result of implementing
the cells with larger number of inputs using SRN and hence
training it using PSO. While this demonstrates the flexipilit
of the framework, it does not imply that the heterogeneity in
architecture or learning is desired and will be problem Hjmec

To validate this assumption Test Case Il is also implemented

=
©

= 2
N
T T
L L

=)

2
T
L

o
S
T
.

Coefficient of determination (Rz)
o o
w o
T T
\ \

02 1 using homogeneous cells where all of the cells consist of
01k 1 MLP as the computational unit and is trained using BP. Fig.
15 shows a comparison of absolute errors between the actual
0 1 2 3 4 and the predicted signals for Test Case Il when implemented
Generator Number using heterogeneous (top plot) and homogeneous (bottain plo
Fig. 14. Coefficients of determination showing goodness diditveen the architectures and learning methods. These results shaw tha
actual and the predicted outputs using CNN and its MLP etgriva the performance of homogeneous and heterogeneous cells in
CNN are comparable in this application. The higher values
TABLE V of absolute error observed in the heterogeneous CNN shows
COMPARISON OFMSE OBTAINED USING CNN AND MLP the errors for Cells 12 and 16, which are implemented using
Training (<10¢ = 8) Testing &10c = §) SRNs. Implementation and.learning in SRN is challenging and
CNN  Equivalent MLP  CNN  Equivalent MLP time consuming due to the inherent feedback. Thereforedas
Gl 19 2.3 304 1832 on the studies, it can be empirically concluded that use of
gg i:g 5:3 ;22'8 ES’E simplified architectures of neural networks, such as an MLP,
i 29 319 55 1469 in individual cells of CNN is more efficient. It can also be
Avg. 2.02 9.62 12.97 156.82 inferred that the capability of CNN is dependent not only on

its computational unit (which architecture of neural neatko
is used in each cell) but also how well the CNN maps the

the actual and the predicted signals for all outputs are stiow System topology through its connectivity.
Table V. The results demonstrate that the performance of CNN4) Speed comparisonDue to the size of the four MLPs
is significantly better than that obtained using MLPs. Aithb  and the four cells of a CNN being different, the time required
most of the outputs of both CNN and its MLP equivalenfor training of these networks on the same data differs sig-
are comparable during training, the performance of egental nificantly. Since both implementations are equivalent nmie
MLP significantly deteriorates during testing on a set ofadabf inputs and topology, they are both linearly scalable.rEac
that was not used during training. This means that the legrnicell of a CNN consists of 56 sets of weights (hence a total of
in MLP is being forced by the backpropagation of errors wheg4 weight updates in each epoch). However, each equivalent
as CNN is actually able to capture the dynamics of the systemLP consists of 280 weights resulting in 1120 weight updates
The physical implementation of equivalent MLP will be morerherefore, time required for training a CNN 79 seconds as
complex and requires more variables to be communicated.opposed t@®77 seconds for the equivalent MLP on the same
Unlike Test Case I, where all the cells are homogeneoasmputer. Similarly, training of SRNs in Test System Il @gin
in size, architecture and learning method, Test Case Il itsrative algorithm (PSO) requires much longer time. Thé®a
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Fig. 15. Absolute error between the actual and the predictegbuts
of 16 cells in Test Case Il. (a) Errors obtained from a CNN watlls 7
having heterogeneous architectures (MLP and SRN) anditeamethods [7]
(BP and PSO). (b) Errors obtained from CNN with cells haviogibgeneous
architectures (MLP) and learning methods (BP).
(8]

justifies the use of simple architectures and learning nustho

in each cell of a CNN. 9]

VII. CONCLUSION

Learning of learning systems is a challenge due to individu&®!
learning systems interacting with other members of the swar
in a collaborative environment. The objective of such leggn
is to improve overall performance of the system. Howevés, tH1]
is only achieved by improving each individual's (subsystem
outputs. Therefore, a cognitive as well as social learngg i
required. This is addressed in the paper by developing[!8!
decentralized asynchronous collaborative learning freonle
for CNN. In such a framework, learning takes place locally
on spatially distributed cells that learn asynchronoudlye [13]
cells collaborate to achieve learning of the overall systdm
application of the proposed method is shown by developingia]
wide area monitoring system for a power systems using het-
erogeneous CNN. The performance of CNN is compared
shown to be better than that of equivalent MLP architecture.
Through a series of empirical tests, it is also concluded tha
best performance of CNN is achieved by actually capturing
the dynamics of the system through its connection architect
while simplifying the computational and learning units eca [17]
cell. As a result, CNN with DAL framework presented in
the paper becomes a scalable, high performance, decenfual-
ized learning system. The presented concept of decertdaliz
asynchronous learning more accurately represents resl mg]
scenarios. Although the cells in CNN have been implemented
on different processors in parallel, the speedup obtained
parallelization is not the main focus of this paper and has
been compared with sequential platform and is not presented
as findings of this research. Real-time parallel implentera
of CNNs remains to be investigated as future work. Extensi&znl]
of the presented methods and applications in larger and more

20]

16] P

11

complex dynamic systems with more variables can also be
area of research for future work.
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