
TO APPEAR IN IEEE TRANSACTIONS ON NEURAL NETWORKS 1

Decentralized Asynchronous Learning in Cellular
Neural Networks

Bipul Luitel, Member, IEEE, Ganesh K Venayagamoorthy,Senior Member, IEEE

Abstract—Cellular neural networks (CNNs) described in liter-
ature so far consist of identical units called cells connected to
their adjacent neighbors. These cells interact with each other in
order to fulfill a common goal. The current methods involved in
learning of CNNs are usually centralized (cells are trained in one
location) and synchronous (all cells are trained simultaneously
either sequentially or in parallel depending on the available
hardware/software platform). In this paper, a generic architecture
of CNN is presented and a special case of supervised learning has
been demonstrated explaining the internal components of a cell. A
decentralized asynchronous learning (DAL) framework for CNN
is developed in which each cell of the CNN learns in a spatially
and temporally distributed environment. An application of DAL
framework is demonstrated by developing a CNN based wide
area monitoring system for power systems. The results obtained
are compared against equivalent traditional methods and shown
to be better in terms of accuracy and speed.

Index Terms—CNN, Decentralized asynchronous learning,
high performance computer, multilayer perceptron, power sys-
tems, PSO, SRN, wide area monitoring

I. I NTRODUCTION

T Wo major variations of cellular neural networks (CNNs)
have been studied in the neural networks community.

CNN introduced by Chua and Yang in 1988 [1] consists of
individual units (cells) connected to each of its neighborson a
cellular structure. Each cell of such a CNN is a computational
unit and have been applied to pattern recognition [2], [3]
and image processing [4], [5]. CNN is a highly non-linear
system and its stability is important for real applications.
Multistability of such CNNs is discussed in [6]. In [7], Werbos
introduced a cellular implementation of simultaneous recurrent
neural networks (SRNs), where each ‘cell’ is an SRN with
same set of weights but different set of inputs. Such a CNN
consisting of SRNs as cells are called Cellular SRN (CSRN)
and that containing multilayer perceptron (MLP) as cells are
called Cellular MLP (CMLP). CSRNs have been used in maze
navigation problem [8], [9], facial recognition [10] and image
processing [11]. Stability of recurrent neural networks inthe
presence of noise and time delays is discussed in [12]. Thus,
[6] and [12] together provide a basis for stability of such
CNNs containing neural networks in each of its cells. In the
original CNN, each cell is connected only to its adjacent
cells [1]. However, in CMLP and CSRN, the connection of

Bipul Luitel and Ganesh K Venayagamoorthy are with Real-Time Power
and Intelligent Systems Laboratory, Department of Electrical and Com-
puter Engineering, Clemson University, Clemson, SC, 29634 USA. Contact:
iambipul@ieee.org, gkumar@ieee.org

The funding provided by the National Science Foundation, USA under
the CAREER grant ECCS #1231820 and EFRI #1238097 is gratefully
acknowledged.

different cells to each other is application dependent, as is
shown in application to bus voltage prediction in a power
system [13]. However, even with variations, most of the CNNs
studied so far consist of identical units in each cell of the
CNN and learning is centralized and synchronous - neural
networks (NN) in each cell of the CSRN or CMLP are trained
simultaneously in one location.

Distributed learning of artificial systems has been of interest
for a long time in the research community. Many approaches
have focused on either data decomposition or task decompo-
sition methods to achieve parallelism by distributing among
multiple processors [14]–[18]. Use of distributed learning in
computational intelligence (CI) and machine learning (ML)
paradigms has also been reported in literature [14], [19], [20].
Although distributed learning methods capture the essenceof
decentralized computing by reducing the volume of infor-
mation shared by performing local computations at different
‘nodes’, the approaches either consist of a ‘master’ making
decisions based on information from the rest of the nodes
in the network [21], or the nodes being centrally located
in one place and synchronized by a global clock. Learning
may be carried out sequentially or in parallel by exploiting
their inherent parallelism using a parallel computing platform.
However, all of the nodes or cells are updated simultaneously
for any change in the system and hence learning is not inde-
pendent among the cells. As such, most current approaches,
even though distributed, carry out centralized synchronous
learning regardless of the hardware/software platform used for
implementing them.

The major contributions of this paper are as follows:

1) A generic framework of CNN is presented and a special
case of supervised learning has been demonstrated.

2) A decentralized asynchronous learning (DAL) frame-
work for CNN has been developed and implemented on
a heterogeneous CNN.

3) CNN with DAL framework has been implemented as
a wide area monitoring system (WAMS) for power
systems.

4) It is shown that multiple neural networks of different
cells of a CNN can each, concurrently, learn information
embedded in data obtained from a complex system.

The remaining sections of the paper are arranged as follows:
Architecture of CNN is presented in Section II. Learning of
learning systems is explained in Section III. Development
of proposed DAL for heterogeneous CNN is explained in
Section IV. Development of WAMS based on CNN with
DAL is presented in Section V. Case studies with results and

TO APPEAR IN IEEE TRANSACTIONS ON NEURAL NETWORKS 2

���������	���
���	

�
������
���	

�����	�	�����
���	

�
�
���

�
��

Fig. 1. Internal units of a generic cell in a CNN.

discussion are presented in Section VI, and conclusions are
given in Section VII.

II. CELLULAR NEURAL NETWORKS

A generic architecture of a CNN consists of cells connected
to each other in some fashion. In this study, each cell consists
of a computational unit, a learning unit and a communication
unit. This is shown in Fig. 1. The computational unit/element
can be appropriately chosen for different applications, but
some variation of one of many CI paradigms will be more
suitable. The purpose of the computational element is to
utilize the information available to it (either directly orthrough
its interaction with the neighbors) to produce an output in
order to improve the performance over time. The ability to
utilize gathered information for improving one’s performance
is also known as experience and is facilitated by the learning
unit. The learning unit can have supervised, unsupervised
or reinforcement based learning and provides a measure for
evaluation of performance based on which a cell can improve
itself. Since the individuals interact with their neighbors in a
collaborative learning system (where neighborhood may be
defined based on certain parameters which are application
dependent, for example electrical distance in the application
shown in this paper), a communication unit is also present
in the cell. This unit consist of input/output interface for
sending to and receiving from other cells in the network.
Communication takes place according to a predefined rule with
as many neighbors as is required by the application.

CNN architecture and learning can be classified as follows:

1) Centralized vs. decentralized: A CNN formation is
said to becentralized if all the cells are located in
one physical location. It is said to bedecentralized if
cells are spatially distributed across different physical
locations (like in grid computing).

2) Homogeneous vs.heterogeneous: A CNN structure is
said to behomogeneous if all the cells have identical

architecture, size and learning method. It is said to be
heterogeneous if one or more of the cells have different
architecture, size or learning method.

3) Synchronous vs. asynchronous: A CNN learning is
said to besynchronous if adaptation takes place con-
currently on all the cells. It is said to beasynchronous
if individual cells learn and adapt at different times and
do not depend on a global or a ‘master’ clock for the
learning.

4) Sequential vs. parallel: A CNN implementation is
said to besequential if it takes place in a sequential
computing environment using a sequential algorithm. It
is said to beparallel if it takes place in a distributed
environment using parallel computing on suitable hard-
ware/software platform.

Fig. 2 shows different variations of CNN in terms of forma-
tion, structure, learning and implementation. Any combination
of these variants can form a different type of CNN. For
example, CNN developed for one of the case studies in this
paper (Test System II) has a decentralized formation, heteroge-
neous structure, heterogeneous learning method, asynchronous
adaptation and is implemented in parallel.

Sometimes ‘decentralized’ and ‘distributed’ are interchange-
ably used in literature. The word ‘distributed’ is, however,
contextual and can mean task, data or temporal distribution
in parallel computing environment, or spatial distribution. For
clarity, the word ‘decentralized’ henceforth is used explicitly
to imply spatial distribution and ‘distributed’ is used in the
context of parallel computing. Synchronized, centralizedand
sequential learning techniques for individual or networked
(cellular or population based) systems have been studied and
applied to a wide variety of problems using CI paradigms.
With the development of advanced hardware/software plat-
forms and parallel computing tools, distributed learning meth-
ods have also been developed and applied. However, to the
best of authors’ knowledge, there has not been any substantial
study in the CI or ML community in the area of decentralized
learning of networked, let alone heterogeneous, learning sys-
tems. The challenge here is that each individual or member
of the system is a learning sub-system in itself and is directly
and/or indirectly related to the knowledge and experience of
the member(s) in its surrounding. In most real-life problems
where each cell implements a nonlinear function, the change
in the input is nonlinear which results in a nonlinear changein
the output. This complex and iterative information dependency,
nonlinear input/output behavior combined with the ability
to learn asynchronously poses even greater challenge in the
learning of such systems. This is known as learning of learning
systems (LOLS).

III. L EARNING OF LEARNING SYSTEMS

Learning of learning systems is a social behavior of swarms
where each individual learns at different pace, at different
times and in different environment while still interacting
with the other individuals of the society. This behavior is
comparable to students performing certain projects in a virtual
classroom in which distant students learn at their own pace,in

TO APPEAR IN IEEE TRANSACTIONS ON NEURAL NETWORKS 3

�����������	
� �
���������
��������
����	
�

���������� ����	������� ��� �	��

���

������ !"�# $�%����� !"�# &��� � '�()���!�

*+,+-���+). *����+-���+).

/����	�0
� �������	
�

1����!�-

2��3+#
4#�5���!+�

4.6�%3�+�+).'6�%3�+�+).

*+,+-���+). *����+-���+).

Fig. 2. CNN variants - structure and implementation.

their own environment at different times while still working
on a common objective. For the same reason, decentralized
learning has developed as an instructional paradigm in the
field of distance education where both synchronous as well
as asynchronous learning methods are utilized [22]. In a
collaborative distributed learning [23], learning occursthrough
communication and collaborative interactions. In [24], Sa-
lomon and Perkins have pointed out that learning involves both
cognitive as well as social aspects. They have also pointed
that a social entity can itself be identified as a learning system
where collective outcome of the system as a whole is more
important than one or more individuals’ output. Learning
in an artificial system having spatially distributed interacting
individuals is the major focus of LOLS.

Consider a generic system consisting of different intercon-
nected subsystems as shown in Fig. 3. The output of any
subsystem connected toN neighboring subsystems as part of
the LOLS can be represented by (1):

Ossi(k) = f
(

αiOSSi
(k − 1), α1

nOSS1
n
(k − 1), . . . ,

αN

n OSSN
n
(k − 1),KSi,KDi

)

(1)

whereα is the discount factor associated with each subsystem.
For any subsystem, the discount factor affects the amount of
influence of its own past experience or the knowledge of its
neighbors in its future decisions. The output of each subsystem
might also be governed by other static and dynamic parameters
associated with the subsystem, which are represented asKSi

and KDi in the equation. In the proposed DAL framework
for CNN, each cell learns in its own location based on its
own inputs and the information obtained from its connectivity
with the neighbors. The objective of the learning is to improve
the overall output of the whole system and not just one or
few individuals of the group, which closely resembles the
cognitive and social learning aspects of swarms in a biological

���������	
��������	
�

�

��

��

��

��

α�78
)1(+kO

iSS

99:;<9:=<>:?

99@;<9@=<>@?

99A;<9A=<>A?

99B;<9B=<>B?

99B;<9B=<>B?

���

���

)(kI
iSS

����������	

�

Fig. 3. (a) A system of interconnected subsystems in the context of LOLS.
(b)Each subsystem in a LOLS showing its output as a function of its inputs.

ecosystem. The learning is decentralized because the individu-
als (cells) can be spatially distributed and communicate certain
information with only a few neighbors of interest. The learning
is asynchronous because it can be temporally distributed
among the individuals (cells). That means, in decentralized
asynchronous learning in a heterogeneous CNN, different
types of cells can learn at different times as deemed necessary
depending on availability of information and deviation from its

TO APPEAR IN IEEE TRANSACTIONS ON NEURAL NETWORKS 4

current output from the desired. At each location, the learning
can be either sequential or parallel. Thus, a DAL framework
for CNN also represents a learning of learning systems.

IV. D ECENTRALIZED ASYNCHRONOUSLEARNING

When the size of the network grows, or the parameters of
one or more components of the network change, then the
input/output behavior of the overall network changes. That
means, in a centralized CNN implementation of a networked
system, any change in one or more nodes in the system
will require a change in the architecture of the entire CNN
representing the network. Also, a synchronized learning mech-
anism will require all of the nodes to update themselves
simultaneously to learn the new change introduced in one or
more parts of the network, although not all of the cells may
be affected by the change. At the hardware level, this trans-
lates into more processing, memory and power consumption.
Therefore, a DAL framework for CNN is developed which
allows for dynamic changes to the network topology without
affecting the operation of the CNN. The learning unit in each
cell quickly captures any change in the network topology or
parameters affecting the cell and updates the computational
unit to reflect the changes. This takes place at each affectedcell
asynchronously. There are both cognitive and social aspects
of learning in DAL. The cognitive learning takes place when
parameters directly affecting the cell change and the cell
has to update itself to reflect the change. This new acquired
knowledge is then transferred to the other members of the
network (neighboring cells) through the communication unit.
As a result, the neighbors observe a change in the behavior,
and update themselves. The new knowledge acquired by one
cell thus propagates through the network which results in
social learning. In Fig. 4, propagation of knowledge across
the network is shown with a typical example of four cells.
Each column represents the change beginning at four different
cells while the rows represent the propagation of the change
across the network over time (samples). It shows how the CNN
transitions from one state to the other asynchronously when
a change occurs at any one of the cells. If the change in the
input causes significant change in the output, then the learning
unit will activate. This happens at every cell in the network
thus leading to a ripple of changes. This leads the network toa
new state of knowledge whenever a change is introduced in the
network. Therefore, DAL framework supports addition of cells
to the network. A centralized implementation is vulnerableto
attacks but DAL framework makes a CNN fault-tolerant and
scalable.

Implementation of DAL in a cell is explained in the follow-
ing paragraphs with reference to the structure of a cell shown
in Fig. 5. The following terms are introduced with respect to
DAL:

• Dynamic database - A buffer of historical data (inputs
and target values) used by the learning unit to train the
NN.

• Window - The interval at which theDatabase is updated
with new data.

• Dynamic database buffer - A buffer of data received
by the communication unit during theWindow. This

C D

E F

C D

E F

C D

E F

C D

E F

C D

E F

C D

E F

C D

E F

C D

E F

C D

E F

C D

E F

C D

E F

C D

E F

C D

E F

C D

E F

C D

E F

C D

E F

GHII J GHII JJ GHII JJJ GHII JK

LM
N
O
P
QR
N
ST
O

Fig. 4. Asynchronous propagation of knowledge across the network in a
DAL framework.

Σ
)(kIn

)1(+
∧

kOn

Σ
Σ

Fig. 5. Implementation of a cell for asynchronous learning.

data is used to update theDynamic database after each
Window. The size of this buffer determines how often
the historical data is updated.

• SendList - A list of neighbors to which each cell has to
send its output.

• RecvList - A list of neighbors from which each cell has
to receive its input.

Each cell maintains its ownDynamic database which is
updated after eachWindow with new data received within that
period and stored inDyanamic database buffer. The con-
tents of theDynamic database are shifted by theWindow

size and the remaining data is filled by the content of the
Dynamic database buffer. This way the historical data is
kept current. After a step-ahead prediction is calculated at the
output ˆO(k) from its input at instantk , (I(k)), it is compared
with its target from previous time instantk−1, which isO(k),
and an absolute relative error (ARE) is calculated according

TO APPEAR IN IEEE TRANSACTIONS ON NEURAL NETWORKS 5

to (2) as the measure of fitness of learning. The ARE may be
taken over one or more steps, in which case it is stored on
the error buffer and accumulated in order to take an average.
If the error is greater than a predetermined thresholdAREt,
then a trigger (T) is activated according to (3). This triggers
the learning unit and the parameters of the computational
element(weights of NN if the computational element is a NN)
are adjusted according to the learning algorithm. Thus an
asynchronous online learning takes place at each cell. DAL
framework in Fig. 5 presents a scenario for supervised learning
where a predefined target is required. Therefore, “Target”
shown in the figure is a buffer for holding the target values
O(k). In the application described in this paper, the target is
generator speed deviation. Since generator speed deviation is
also one of the inputs to the cell, the target is a step-ahead
(time shifted) values of that input. The learning in each cell
of a CNN with DAL is shown in flowchart of Fig. 6.

AREn(k) =
‖On(k)− Ôn(k)‖

‖On(k)‖
(2)

T =

{

1 If ARE > AREt

0 Otherwise
(3)

V. DEVELOPMENT OFWAMS BASED ON CNN WITH DAL

Power system consists of components and phenomena as-
sociated with them that have complex dynamic behavior. Such
components such as generators and phenomena such as power
flows can be represented by differential algebraic equations
(DAEs) [25]. Since neural networks can be effectively used to
learn the output of such DAEs, they can be a very suitable tool
for modeling and monitoring the behavior of power system
components and phenomena. A WAMS is used to assess the
status of various components of a power system for providing
predictive control. In future power systems (smart grids),the
number of such components will be very large and hence
it becomes challenging to perform accurate predictive state
estimation using WAMS in a reasonable amount of time [26].
Therefore, a WAMS based on CNN with DAL is proposed.

The proposed CNN consists of neural networks in each cell
and closely relates to the Object Net approach described in
[27], [28]. These cells may be homogeneous having similar
types and sizes of neural networks or heterogeneous depending
on the type of application. Each cell of the CNN is used to
predict the speed deviation of one generator in the power
system. The architecture of CNN is developed such that it
exactly represents the physical structure of the power system.
This is done in two phases. In Phase I, the cells are connected
to each other based on ‘nearest-n neighbors’ topology, which
means previous sample outputs ofn nearest neighbors of each
cell are connected to the inputs of that cell. The numbern

should be picked such that it is less than the total number
of cells (N), but also ensuring that the connectivity of the
network is not lost. This is better understood by referring
to the applications presented in the paper. In the proposed
application, the “nearness” of components is defined as the

electrical distance between the generators and is measured
based on the length of the transmission lines separating the
two generators. In this study, two nearest neighbors (n = 2)
are considered for designing the CNN. For example in the
Test System I (Fig. 7), two nearest neighbors of generatorG1
are generatorsG2 andG4. This is represented in the CNN by
connecting the outputs of the cellsC2 andC4 to the inputs
of the cell C1. Similarly for G4, two nearest neighbors are
G2 and G3 and hence outputs of the cellsC2 and C3 are
connected to the inputs of the cellC4. This topology allows
for the scalability of the CNN by keeping the size of the
NN in each cell to a minimum. However, for Test System
II (Fig. 8(a)), a complete connectivity of the system is not
obtained by only considering nearest-2 neighbors between the
generators, as is shown in Fig. 8(b). To avoid forming islands
on a large power system, nearest generators in adjacent islands
are connected in Phase II in order to obtain a CNN structure
as shown in Fig. 8(c). Due to the extra connections in some

Initialize, k = 0;
Dynamic database buffer

Wid = 0;
Dynamic database buffer size, Ws

Output buffer
Error buffer

Communication unit
receives input data

Insert input (In(k)) in
window buffer Wid

Continue?

Increment Wid,
Wid = Wid + 1

Start

Stop

Wid = 0

Is Wid >
Ws?

Calculate output from
computational unit

Put in output buffer,

Calculate and accumulate
error

Use dynamic database to
train “mirror of the

computational element”
and update its parameters

Is ARE >
AREt?

Download the new
parameters to the

computational element

No

Yes
No

Yes, k = k+1

Shift the dynamic
database by Ws

Update dynamic
database with new data
from dynamic database

buffer and target

Yes, T = 1

No

Fig. 6. Flowchart illustrating learning of a cell (Fig. 5) ina CNN.

TO APPEAR IN IEEE TRANSACTIONS ON NEURAL NETWORKS 6

UV

V W X

Y Z [

V\ VV]

^_

_W`a
V\`a

_W`a
V\`a

bbcde bbcde

U_ U^

U]

)(1 kVrefG∆)(2 kVrefG∆)(4 kVrefG∆)(3 kVrefG∆
)(1 kGω∆)(2 kGω∆)(4 kGω∆)(3 kGω∆

)1(1 +∆
∧

kGω)1(2 +∆
∧

kGω)1(3 +∆
∧

kGω)1(4 +∆
∧

kGω

fgh

)(1 kGω∆

)(1 kVrefG∆

)(2 kVrefG∆

)(2 kGω∆

)(4 kVrefG∆

)(4 kGω∆

)(3 kGω∆

)(3 kVrefG∆

fghfgh

fghfgh

ij

ik il

im

Fig. 7. CNN based WAM for a two-area four-machine system (TestSystem
I).

of the cells due to Phase II connection, a heterogeneous CNN
is developed. In this paper, a WAMS based on CNN with
DAL is developed to predict the speed deviations (∆ω̂) of
each generator in the multimachine power system at instant
k + 1 based on speed deviations (∆ω) and deviation of the
reference voltage (∆V ref) (shown in Fig. 9) of the generators
at instantk as the inputs.

For Test System I, the computational unit in each cell is an
MLP. Each MLP is a time-delayed neural network (TDNN)
with an input layer of six neurons, a hidden layer of eight
neurons and an output layer of a single neuron. Each cell
consists of six inputs viz. actual reference voltage applied to
the generator∆V ref(k), current and time-delayed values of
the actual speed deviation of the generator∆ω(k),∆ω(k −
1),∆ω(k−2) and the predicted speed deviations of the nearest
two generators,∆ ˆωn1(k) and ∆ ˆωn2(k). For Test System
II, the cells connected to two nearest neighbors have their
computation unit implemented using MLPs where as those
with more than two nearest neighbors (cells participating in
inter-island connectivity of Phase II) are implemented using
SRNs in order to capture the new dynamics. The number of
neurons in the input, hidden and context layer of SRN is
dependent on the number of neighbors each cell is connected
to. Unlike MLPs, the inputs to the SRN consist of only current
values of the the inputs i.e.∆V ref(k), ∆ω(k), ∆ ˆωn1(k),
∆ ˆωn2(k) and∆ ˆωn3(k). The computational unit in each cell
of the CNN is a neural network and is independently trained
by the learning unit. The CNN presented here is heterogeneous
in terms of both computational as well as learning unit. In this
study, the learning unit of the cells whose computational unit

no

np
nq

nr

ns

nt

nu

nv nw

nww

nwx

nwq

nwp

nwt

nwr

nws

����

����

����

yz

y{
y|

y}

y~

y�

y�

y� y�

y��

y��

y�|

y�{

y��

y�}

y�~

���� ���

Fig. 8. (a) New York-New England 16-generator 68-bus systemused as
Test System II. (b) CNN implementation in Phase I shown on top ofa
faint background of the Test System. (c) Implementation in Phase II showing
complete connectivity through heterogeneous CNN.

refV

refV∆

Fig. 9. Generator excitation system (showing∆V ref).

TO APPEAR IN IEEE TRANSACTIONS ON NEURAL NETWORKS 7

is an MLP uses backpropagation (BP) and that of cells whose
computational unit is an SRN uses particle swarm optimization
(PSO) [29] to train it. PSO has been shown to be effective in
training of neural networks [29]–[31]. Since training of SRNs
is a challenging task, PSO has been used to train them. For
every sample of the input dataI(k), each cell produces a step-
ahead predicted outputO(k+1). Therefore, for any input data
of size 1, 2, . . . , k, . . . ,K discrete samples, andWn and Vn

be the input and output weight matrices respectively of the
SRN innth cell, then the output of each cell is given by (4).

On(k) = ∆ω̂n(k)

= f (In(k − 1),Wn(k), Vn(k)) (4)

Considering the case of two nearest neighbors, the input vector
for any cell will be:

In(k) = [∆V refn(k),∆ωn(k),∆ωn(k − 1),

∆ωn(k − 2),∆ω̂n1(k),∆ω̂n2(k)] (5)

The predicted speed deviations can be written as:

∆ω̂1(k + 1) = f (W1(k), V1(k),∆V ref1(k),

∆ω1(k − 2),∆ω1(k − 1),∆ω1(k),

∆ω̂2(k),∆ω̂4(k)) (6)

∆ω̂2(k + 1) = f (W2(k), V2(k),∆V ref2(k),

∆ω2(k − 2),∆ω2(k − 1),∆ω2(k),

∆ω̂1(k),∆ω̂4(k)) (7)

∆ω̂3(k + 1) = f (W3(k), V3(k),∆V ref3(k),

∆ω3(k − 2),∆ω3(k − 1),∆ω3(k),

∆ω̂2(k),∆ω̂4(k)) (8)

∆ω̂4(k + 1) = f (W4(k), V4(k),∆V ref4(k),

∆ω4(k − 2),∆ω4(k − 1),∆ω4(k),

∆ω̂2(k),∆ω̂3(k)) (9)

In order to simulate a decentralized operation, the CNN is
implemented on a parallel computer where each cell resides on
a separate processor and communicates to its neighbors (other
processors) using message passing interface (MPI). Each cell
maintains aSendList and aRecvList and usesMPI send

andMPI recv commands to send/receive the data between
the neighbors. For a CNN withN cells, SendList and
RecvList are N length vectors with a value of ‘1’ in the
column representing its nearest neighbors or a value of ‘0’
otherwise. For Test System I, theSendList and RecvList

are shown in Table I. The two matrices will be transpose of
each other. The communication protocol for each cell is given
in the pseudocode.

for n = 1 to N do
if SendList(n) == 1 then

Send output toCelln usingMPI send.
end if
if RecvList(n) == 1 then

Receive input fromCelln usingMPI recv.
end if

end for

VI. RESULTS AND DISCUSSIONS

A. Test Systems I and II

A stream of data used for this study is obtained by simula-
tion of the test systems in real-time digital simulator (RTDS)
[32]. Since RTDS operates in real-time, it gives a more realistic
representation of an actual system. A pseudo-random binary
signal (PRBS) applied to the excitation system of the generator
causes a change in the reference voltageV ref which causes
the speed deviation in the generators. Perturbation is increased
on generators each time and 10 seconds of data at 100 Hz
collected for each PRBS applied to additional generator. Thus,
a 40 seconds of data is used as the input stream to the CNN.
Output of each cell is a step ahead prediction of the input data
corresponding to each generator of the test system. The output
of the CNN plotted against the actual signal is shown in Fig.10.
The proposed DAL framework for CNN consists of many
variables that can be customized based on applications. These
variables are parameters associated with learning methods(eg.
learning gain, momentum gain, iterations, population size,
acceleration constants, error threshold), computationalunits
(eg. number or neurons in different layers) and the DAL
framework (eg. neighborhood size, database and buffer size).
Table II lists those variables/parameters and their valuesused
in the application described in the paper. The values can be
considered as a starting point in any future applications but
are not claimed as optimal.

Test System II is represented by a CNN consisting of 16
cells each predicting the speed deviation of one generator in
the system. The output of the CNN are shown in Fig.11.

B. Discussion

1) Asynchronous learning:Asynchronous behavior in CNN
learning is as a result of learning unit trigger shown in (3).
The cell undergoes weight updates using the historical data
from Dynamic database only whenT = 1. Fig. 12 is the
plot of the trigger vector ‘T ’ over the training duration. The
plot shows the asynchronous learning during implementation
of Test System I where different cells are learning at different
times depending on their performance. The x-axis shows the

TABLE I
SendList AND RecvList OF FOUR CELLS FORTEST SYSTEM I

SendList RecvList

I II III IV I II III IV
Cell I 0 1 0 0 0 1 0 1
Cell II 1 0 1 1 1 0 0 1
Cell III 0 0 0 1 0 1 0 1
Cell IV 1 1 1 0 0 1 1 0

TO APPEAR IN IEEE TRANSACTIONS ON NEURAL NETWORKS 8

10 15 20 25 30 35 40

−2

0

2

x 10
−3

δ
ω

1

Actual

Predicted

10 15 20 25 30 35 40

−2

0

2

x 10
−3

δ
ω

2

10 15 20 25 30 35 40

−2

0

2

x 10
−3

δ
ω

3

10 15 20 25 30 35 40

−2

0

2

x 10
−3

δ
ω

4

Fig. 10. Output of the CNN for Test System I.

TABLE II
PARAMETERS USED FOR TRAINING A CELL OFCNN.

Learning Gain 0.005
Momentum Gain 0.001
Number of PSO iterations 1000
Cognitive acceleration constant (c1) 2
Social acceleration constant (c2) 2
Momentum (w) (Linearly) 0.9 to 0.4
Database size 1000
Window size 100
Error threshold (AREt) 5%
Case I:n-neighbors 2
CaseI: Learning method BP
MLP (Test System I) 6x8x1
Case II:n-neighbors 2, 3, 4
MLP (Test System II) 6x8x1
SRN (Test System II, Cell 1,2,3,4,14,16) 13x8x1
SRN (Test System II, Cell 10, 12) 14x8x1
Dynamic database buffer 100
Dynamic database 1000

progress in time. For each cell shown on each row in y-
axis, the shaded part in x-axis corresponds to the time when
each cell learns (T = 1) and the white spaces represent the
times when it does not (because of its predictions being within
the expected threshold,T = 0). Similarly, Fig.13 shows the
asynchronous learning of the cells of Test System II in DAL
framework. The MLP and SRN cells are distinguished by dif-
ferent shades, and rows 1, 2, 3, 4, 10, 12, 14 and 16 correspond
to the SRN learning. For Test System I, asynchronous learning
takes271 seconds as opposed to19 minutes for synchronous
learning. Average mean squared errors (MSEs) between the
actual and the predicted outputs of all the cells during testing
on CNNs trained using synchronous (asynchronous) learning
is 19.4 (12.97). The result is rather surprising and impliesthat
updating the neural network weights on every sample of input
is not the ideal way to train it, and may in fact deteriorate its
performance in a connected network like the CNN. While the
observations show obvious benefits of asynchronous learning
in terms of speed, the paper does not claim that a threshold of
5% for triggering the learning unit is optimal. It requires more
in-depth research into the weight update pattern with different

−2
0
2

x 10
−3

δ
ω

1

−2
0
2

x 10
−3

δ
ω

2

−2
0
2

x 10
−3

δ
ω

3

−2
0
2

x 10
−3

δ
ω

4

−2
0
2

x 10
−3

δ
ω

5

−2

0

2
x 10

−3

δ
ω

6

−2

0

2
x 10

−3

δ
ω

7

−2

0

2

x 10
−3

δ
ω

8

−2

0

2

x 10
−3

δ
ω

9

−2

0

2

x 10
−3

δ
ω

1
0

−2

0

2

x 10
−3

δ
ω

1
1

−2

0

2

x 10
−3

δ
ω

1
2

−2

0

2

x 10
−3

δ
ω

1
3

−2
0
2

x 10
−3

δ
ω

1
4

−2

0

2

x 10
−3

δ
ω

1
5

10 11 12 13 14 15 16 17 18 19

−2
0
2

x 10
−3

δ
ω

1
6

Actual

Predicted

Time (s)

Fig. 11. Output of the CNN for generators in Test System II.

thresholds and comparison of its performance in training
as well as testing to come to a fair conclusion regarding
speed/accuracy tradeoff in asynchronous learning.

2) Knowledge retention:The CNN trained using DAL
framework is used to test the simulation data obtained from
a 10-cycle 3-phase to ground fault on bus 8 of Test System
I. Then a Prony analysis [33] is carried out on the predicted
outputs of the CNN as well as the actual data. In Table III,
the natural frequencies (ωN) and damping ratios (ζ) obtained
from the Prony analysis of the actual and the predicted signals
are presented along with errors (EωN andEζ) between the
actual and the predicted. The results show that the dominant
inter-area and intra-area frequency modes present in the power
system are also captured by CNN within less than 2% error
in natural frequency and less than 4% error in damping ratio.
In Table IV, Prony analysis performed on the training data
obtained after different learning duration has been presented.
The data presented shows that some frequency modes are
extracted early on but some frequency modes are either
not present or not accurate, which improves over time. For

TO APPEAR IN IEEE TRANSACTIONS ON NEURAL NETWORKS 9

�� �� �� �� �� �� �� �� �� �� ��

���� ���

���� �

���� �

���� �

���� �

�� ¡¢�¢£ ¤ ¥�¢£ ¦§ ¨� �¦ ¡��§© ª« §� ¡¢�¢£ ¤ ¥�¢£ ¦§ ¨�

Fig. 12. Asynchronous learning of cells in the CNN. The shaded portion of the figure represents when each cell’s learning unit was triggered.

¬­ ¬¬ ¬® ¬¯ ¬° ¬± ¬² ¬³ ¬´ ¬µ ®­

¶·¸¹ º»¼

½¾¿¿ À

½¾¿¿ Á

½¾¿¿ Â

½¾¿¿ Ã

½¾¿¿ Ä

½¾¿¿ Å

½¾¿¿ Æ

½¾¿¿ Ç

½¾¿¿ È

½¾¿¿ ÀÉ

½¾¿¿ ÀÀ

½¾¿¿ ÀÁ

½¾¿¿ ÀÂ

½¾¿¿ ÀÃ

½¾¿¿ ÀÄ

½¾¿¿ ÀÅ

Fig. 13. Asynchronous learning of 16 cells in the CNN implementing Test System II. The shaded portion of the figure represents when each cell’s learning
unit was triggered. Darker shades represent the cells implemented using SRN and lighter shades represent those implementedusing MLP.

TABLE III
NATURAL FREQUENCIES(ωN) AND DAMPING RATIOS (ζ) OBTAINED WITH

PRONY ANALYSIS OF THE CNN OUTPUT COMPARED WITH ACTUAL

SIGNAL.

Actual Predicted Error %
ωN ζ ω̂N ζ̂ EωN Eζ

G1
Mode 1 0.6023 0.1489 0.6035 0.1476 0.1992 0.13
Mode 2 1.2075 0.1623 1.2026 0.1521 0.4058 1.02

G2
Mode 1 0.6023 0.1504 0.6039 0.1622 0.2657 1.18
Mode 2 1.2482 0.1424 1.2298 0.1363 1.4741 0.61

G3
Mode 1 0.6036 0.1491 0.6059 0.1486 0.381 0.05
Mode 2 1.251 0.1483 1.2311 0.1517 1.5907 0.34

G4
Mode 1 0.6036 0.1481 0.6051 0.1474 0.2485 0.07
Mode 2 1.2196 0.1463 1.233 0.1802 1.0987 3.39

the intra-area frequency modes in the Test System I, The
minimum errors in natural frequency modes are obtained after
40 seconds of training, which is the complete set of data used
for Test System I. These result showing extraction of frequency
modes from the output of CNN validates that a CNN has the
ability to extract ‘information’ from ‘data’ based on cognitive
and social learning.

3) Performance comparison:In this study,n-nearest neigh-
bor topology has been used for developing the CNN where
predicted time delayed signals from the neighbors have been
used as inputs to each cell. For Test System I, if the same
topology is to be implemented on an MLP, four time-delayed
neural networks can be obtained by combining (6) to (9) and
replacing the predicted outputs with time delayed values of
the actual signal. For example, output of MLP for generator

G1 can be obtained using (6), (7) and (9) as follows:

∆ω̂1(k + 1) = f (W1(k), V1(k),∆V ref1(k),∆ω1(k − 2),

∆ω1(k − 1),∆ω1(k),∆V ref2(k − 1),

∆ω2(k − 3),∆ω2(k − 2),∆ω2(k − 1),

∆V ref4(k − 1),∆ω4(k − 3),∆ω4(k − 2),

∆ω4(k − 1),∆ω3(k − 1)) (10)

Thus, MLP equivalent of a cell has 13 inputs. Using 20
hidden neurons and one output, the performance of MLP can
be equivalently compared with each cell of a CNN. It is not
claimed that the number of inputs to the equivalent MLP are
optimal, but in order to capture the inter-area and intra-area
frequency modes in the power system, all the information
available to each cell in CNN is also made available to the
equivalent MLP. Test Case I is implemented on the MLP
equivalent of the CNN and tested using 10-cycle 3-phase
line to ground fault data. Coefficient of determination (R2)
is used to show the goodness of fit between the actual and
the predicted signals.R2 is a statistical measure of how
well the regression line approximates the real data points.An
R2 of 1.0 indicates that the regression line perfectly fits the
data. Fig. 14 shows the comparison ofR2 between the actual
speed deviations of four generators and their predicted values
obtained from CNN and its MLP equivalent. It shows that
higher values ofR2 are obtained for predictions with CNN as
compared to those with MLP. Comparison of MSEs between

TO APPEAR IN IEEE TRANSACTIONS ON NEURAL NETWORKS 10

TABLE IV
EVOLUTION OF LEARNING IN EACH CELL OVER TIME.

G1 G2 G3 G4
Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2

ωN 0.6023 1.2075 0.6023 1.2482 0.6036 1.251 0.6036 1.2196
ω̂N : 10s 0.6042 1.2127 0.6052 1.2132 0.6044 1.2271 0.6034 1.2635
ω̂N : 16s 0.603 1.188 0.6025 1.1745 0.6037 - 0.605 1.2707
ω̂N : 22s 0.6025 1.1879 0.6009 1.2211 0.6029 1.1956 0.6049 1.272
ω̂N : 28s 0.6035 1.1935 0.6041 1.1808 0.6033 1.1636 0.6047 1.2598
ω̂N : 34s 0.6034 1.1931 0.6028 1.1898 0.6025 1.1873 0.6042 1.2615
ω̂N : 40s 0.6035 1.2026 0.6039 1.2298 0.6059 1.2311 0.6051 1.233
EωN : 10s 0.3155 0.43064 0.4815 2.804 0.1325 1.9104 0.0331 3.5995
EωN : 16s 0.1162 3.6853 0.0332 5.9045 0.0166 - 0.2319 4.1899
EωN : 22s 0.0332 1.6231 0.2324 2.1711 0.1160 4.4284 0.2153 4.2965
EωN : 28s 0.1992 1.1594 0.2988 5.3997 0.0497 6.9864 0.1822 3.2962
EωN : 34s 0.1826 1.1925 0.0830 4.6787 0.1822 5.0919 0.0994 3.4355
EωN : 40s 0.1992 0.4058 0.2656 1.4741 0.381 1.5907 0.2485 1.0987

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generator Number

C
o
e
ff
ic

ie
n
t
o
f
d
e
te

rm
in

a
ti
o
n
 (

R
2
)

CNN

Equivalent MLP

Fig. 14. Coefficients of determination showing goodness of fitbetween the
actual and the predicted outputs using CNN and its MLP equivalent.

TABLE V
COMPARISON OFMSE OBTAINED USING CNN AND MLP

Training (×10e− 8) Testing (×10e− 8)
CNN Equivalent MLP CNN Equivalent MLP

G1 1.9 2.3 30.4 183.2
G2 1.4 2.3 12.8 118.8
G3 1.9 2.0 3.2 178.4
G4 2.9 31.9 5.5 146.9
Avg. 2.02 9.62 12.97 156.82

the actual and the predicted signals for all outputs are shown in
Table V. The results demonstrate that the performance of CNN
is significantly better than that obtained using MLPs. Although
most of the outputs of both CNN and its MLP equivalent
are comparable during training, the performance of equivalent
MLP significantly deteriorates during testing on a set of data
that was not used during training. This means that the learning
in MLP is being forced by the backpropagation of errors where
as CNN is actually able to capture the dynamics of the system.
The physical implementation of equivalent MLP will be more
complex and requires more variables to be communicated.

Unlike Test Case I, where all the cells are homogeneous
in size, architecture and learning method, Test Case II is

heterogeneous with some of the cells consisting of different
number of inputs, different type of computational and learning
units. These heterogeneity in size of the cells was a result
of increased number of connections in certain cells in order
to capture the system topology. However, the heterogeneity
in architecture and learning was a result of implementing
the cells with larger number of inputs using SRN and hence
training it using PSO. While this demonstrates the flexibility
of the framework, it does not imply that the heterogeneity in
architecture or learning is desired and will be problem specific.
To validate this assumption Test Case II is also implemented
using homogeneous cells where all of the cells consist of
MLP as the computational unit and is trained using BP. Fig.
15 shows a comparison of absolute errors between the actual
and the predicted signals for Test Case II when implemented
using heterogeneous (top plot) and homogeneous (bottom plot)
architectures and learning methods. These results show that
the performance of homogeneous and heterogeneous cells in
CNN are comparable in this application. The higher values
of absolute error observed in the heterogeneous CNN shows
the errors for Cells 12 and 16, which are implemented using
SRNs. Implementation and learning in SRN is challenging and
time consuming due to the inherent feedback. Therefore, based
on the studies, it can be empirically concluded that use of
simplified architectures of neural networks, such as an MLP,
in individual cells of CNN is more efficient. It can also be
inferred that the capability of CNN is dependent not only on
its computational unit (which architecture of neural network
is used in each cell) but also how well the CNN maps the
system topology through its connectivity.

4) Speed comparison:Due to the size of the four MLPs
and the four cells of a CNN being different, the time required
for training of these networks on the same data differs sig-
nificantly. Since both implementations are equivalent in terms
of inputs and topology, they are both linearly scalable. Each
cell of a CNN consists of 56 sets of weights (hence a total of
224 weight updates in each epoch). However, each equivalent
MLP consists of 280 weights resulting in 1120 weight updates.
Therefore, time required for training a CNN is79 seconds as
opposed to277 seconds for the equivalent MLP on the same
computer. Similarly, training of SRNs in Test System II using
iterative algorithm (PSO) requires much longer time. This also

TO APPEAR IN IEEE TRANSACTIONS ON NEURAL NETWORKS 11

10 11 12 13 14 15 16 17 18 19

0.5

1

1.5

2

x 10
−3

A
b

s
o

lu
te

 E
rr

o
r

(a)

10 11 12 13 14 15 16 17 18 19

0.5

1

1.5

2

x 10
−3

(b) Time (s)

A
b

s
o

lu
te

 E
rr

o
r

Fig. 15. Absolute error between the actual and the predictedoutputs
of 16 cells in Test Case II. (a) Errors obtained from a CNN withcells
having heterogeneous architectures (MLP and SRN) and learning methods
(BP and PSO). (b) Errors obtained from CNN with cells having homogeneous
architectures (MLP) and learning methods (BP).

justifies the use of simple architectures and learning methods
in each cell of a CNN.

VII. C ONCLUSION

Learning of learning systems is a challenge due to individual
learning systems interacting with other members of the swarm
in a collaborative environment. The objective of such learning
is to improve overall performance of the system. However, this
is only achieved by improving each individual’s (subsystem)
outputs. Therefore, a cognitive as well as social learning is
required. This is addressed in the paper by developing a
decentralized asynchronous collaborative learning framework
for CNN. In such a framework, learning takes place locally
on spatially distributed cells that learn asynchronously.The
cells collaborate to achieve learning of the overall system. An
application of the proposed method is shown by developing a
wide area monitoring system for a power systems using het-
erogeneous CNN. The performance of CNN is compared and
shown to be better than that of equivalent MLP architecture.
Through a series of empirical tests, it is also concluded that
best performance of CNN is achieved by actually capturing
the dynamics of the system through its connection architecture
while simplifying the computational and learning units in each
cell. As a result, CNN with DAL framework presented in
the paper becomes a scalable, high performance, decentral-
ized learning system. The presented concept of decentralized
asynchronous learning more accurately represents real life
scenarios. Although the cells in CNN have been implemented
on different processors in parallel, the speedup obtained by
parallelization is not the main focus of this paper and has not
been compared with sequential platform and is not presented
as findings of this research. Real-time parallel implementation
of CNNs remains to be investigated as future work. Extension
of the presented methods and applications in larger and more

complex dynamic systems with more variables can also be
area of research for future work.

REFERENCES

[1] L. Chua and L. Yang, “Cellular neural networks,” inIEEE International
Syposium on Circuits and Systems, vol. 2, 1988, pp. 985–988.

[2] P. Tzionas, A. Thanailakis, and P. Tsalides, “A hybrid cellular au-
tomaton/neural network classifier for multi-valued patternsand its vlsi
implementation,”Integration, the VLSI Journal, vol. 20, no. 2, pp. 211
– 237, 1996.

[3] T. Su, Y. Du, Y. Cheng, and Y. Su, “A fingerprint recognition system
using cellular neural networks,” inInternational Workshop on Cellular
Neural Networks and Their Applications. IEEE, 2005, pp. 170–173.

[4] L. Chua and L. Yang, “Cellular neural networks: Theory,”IEEE Trans-
actions on circuits and systems, vol. 35, no. 10, pp. 1257–1272, 1988.

[5] I. Aizenberg, N. Aizenberg, J. Hiltner, C. Moraga, and E.M. zu Bexten,
“Cellular neural networks and computational intelligence in medical
image processing,”Image and Vision Computing, vol. 19, pp. 177 –
183, 2001.

[6] Z. Zeng and W. X. Zheng, “Multistability of neural networks with time-
varying delays and concave-convex characteristics,”Neural Networks
and Learning Systems, IEEE Transactions on, vol. 23, no. 2, pp. 293
–305, feb. 2012.

[7] P. Werbos and X. Pang, “Generalized maze navigation: Srn critics
solve what feedforward or hebbian nets cannot,” inIEEE International
Conference on Systems, Man, and Cybernetics, vol. 3, oct 1996, pp.
1764 –1769 vol.3.

[8] D. Wunsch, “The cellular simultaneous recurrent networkadaptive
critic design for the generalized maze problem has a simple closed-
form solution,” in IEEE-INNS-ENNS International Joint Conference on
Neural Networks, vol. 3, 2000, pp. 79 –82 vol.3.

[9] R. Ilin, R. Kozma, and P. Werbos, “Beyond feedforward models trained
by backpropagation: A practical training tool for a more efficient uni-
versal approximator,”IEEE Transactions on Neural Networks, vol. 19,
no. 6, pp. 929 –937, june 2008.

[10] Y. Ren, K. Anderson, K. Iftekharuddin, P. Kim, and E. White, “Pose in-
variant face recognition using cellular simultaneous recurrent networks,”
in International Joint Conference on Neural Networks (IJCNN 2009),
june 2009, pp. 2634 –2641.

[11] K. Anderson, K. Iftekharuddin, E. White, and P. Kim, “Binary image
registration using cellular simultaneous recurrent networks,” in IEEE
Symposium on Computational Intelligence for Multimedia Signal and
Vision Processing, 30 2009-april 2 2009, pp. 61 –67.

[12] Y. Shen and J. Wang, “Robustness analysis of global exponential
stability of recurrent neural networks in the presence of time delays and
random disturbances,”Neural Networks and Learning Systems, IEEE
Transactions on, vol. 23, no. 1, pp. 87 –96, jan. 2012.

[13] L. Grant and G. Venayagamoorthy, “Voltage prediction using a cellular
network,” in IEEE Power and Energy Society General Meeting, july
2010, pp. 1 –7.

[14] J. Hunt and D. Cooke, “An adaptive, distributed learning system based
on the immune system,” inIEEE International Conference on Systems,
Man and Cybernetics, vol. 3. IEEE, 1995, pp. 2494–2499.

[15] F. Provost and D. Hennessy, “Scaling up: Distributed machine learn-
ing with cooperation,” inProceedings of the National Conference on
Artificial Intelligence. Citeseer, 1996, pp. 74–79.

[16] P. Auer, H. Burgsteiner, and W. Maass, “Reducing communication for
distributed learning in neural networks,”Artificial Neural NetworksI-
CANN 2002, pp. 133–133, 2002.

[17] A. Asuncion, P. Smyth, and M. Welling, “Asynchronous distributed
learning of topic models,”Advances in Neural Information Processing
Systems, vol. 21, pp. 81–88, 2008.

[18] T. Alpcan and C. Bauckhage, “A distributed machine learning frame-
work,” in Proceedings of the 48th IEEE Conference on Decision and
Control, dec. 2009, pp. 2546 –2551.

[19] M. Dorigo and L. Gambardella, “Ant colony system: A cooperative
learning approach to the traveling salesman problem,”IEEE Transac-
tions on Evolutionary Computation, vol. 1, no. 1, pp. 53–66, 1997.

[20] O. Tilak and S. Mukhopadhyay, “Decentralized and partially decentral-
ized reinforcement learning for distributed combinatorial optimization
problems,” inNinth International Conference on Machine Learning and
Applications (ICMLA), dec. 2010, pp. 389 –394.

[21] L. Huang, M. I. Jordan, A. Joseph, M. Garofalakis, and N.Taft, “In-
network pca and anomaly detection,” inIn NIPS. MIT Press, 2006,
pp. 617–624.

TO APPEAR IN IEEE TRANSACTIONS ON NEURAL NETWORKS 12

[22] C. Dede, “Emerging technologies and distributed learning,” American
Journal of Distance Education, vol. 10, no. 2, pp. 4–36, 1996.

[23] M. Alavi, G. Marakas, and Y. Yoo, “A comparative study of distributed
learning environments on learning outcomes,”Information Systems Re-
search, vol. 13, no. 4, p. 404, 2002.

[24] G. Salomon and D. Perkins, “Individual and social aspects of learning,”
Review of research in education, vol. 23, pp. 1–24, 1998.

[25] P. Kundur,Power system stability and control. McGraw-Hill Profes-
sional, 1994.

[26] A. Abur and A. Exposito,Power system state estimation: theory and
implementation. CRC, 2004, vol. 24.

[27] P. J. Werbos, “Intelligence in the brain: A theory of howit works and
how to build it,” Neural Networks, vol. 22, no. 3, pp. 200 – 212, 2009.

[28] L. Werbos and P. Werbos, “Self-organization in cnn-based object nets,”
in Cellular Nanoscale Networks and Their Applications (CNNA), 2010
12th International Workshop on, feb. 2010, pp. 1 –6.

[29] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE
International Conference on Neural Networks, vol. 4, 1995.

[30] C. Zhang, H. Shao, and Y. Li, “Particle swarm optimisation for evolving
artificial neural network,” inIEEE International Conference on Systems,
Man, and Cybernetics, vol. 4. IEEE, 2000, pp. 2487–2490.

[31] R. Eberhart and Y. Shi, “Particle swarm optimization: developments,
applications and resources,” inProceedings of the 2001 congress on
evolutionary computation, vol. 1. Piscataway, NJ, USA: IEEE, 2001,
pp. 81–86.

[32] RTDS, “Real time digital simulator tutorial manual (rscadversion),”
RTDS Technologies, March 2008.

[33] J. Hauer, C. Demeure, and L. Scharf, “Initial results in prony analysis of
power system response signals,”IEEE Transactions on Power Systems,
vol. 5, no. 1, pp. 80–89, 1990.

Bipul Luitel (S’08-M’12) received his MS (2009)
and PhD (2012) degrees in Computer Engineering
from Missouri University of Science & Technology,
Rolla, MO, USA. He is currently a postdoctoral
fellow at Clemson University, Clemson, SC. His
research area includes development and application
of cellular neural networks for situational awareness
in smart grids, implementation on high performance
computing platforms, and real-time power system
data analytics. He was a recipient of IEEE CIS
Walter Karplus Graduate Research Grant in 2010

and IEEE CIS Student Travel Grant in 2011.

Ganesh Kumar Venayagamoorthy (S’91-M’97-
SM’02) received his Ph.D. degree in electrical en-
gineering from the University of Natal, Durban,
South Africa, in 2002. He is the Duke Energy
Distinguished Professor of Electrical and Computer
Engineering at Clemson University, Clemson, USA.
Prior to that, he was a Professor of Electrical and
Computer Engineering at the Missouri University
of Science and Technology (Missouri S&T), Rolla,
USA. He was a Visiting Researcher with ABB
Corporate Research, Sweden, in 2007. Dr. Venayag-

amoorthy is Founder and Director of the Real-Time Power and Intelligent
Systems Laboratory (http://rtpis.org). His research interests are in the de-
velopment and applications of advanced computational algorithms for real-
world applications, including power systems stability and control, smart grid
applications, sensor networks and signal processing. He has published 2 edited
books, 8 book chapters, and over 90 refereed journals papersand 300 refereed
conference proceeding papers.

Dr. Venayagamoorthy is a recipient of several awards including a 2008
US National Science Foundation (NSF) Emerging Frontiers in Research and
Innovation Award, a 2007 US Office of Naval Research Young Investigator
Program Award, a 2004 NSF CAREER Award, the 2010 Innovation Award
from St. Louis Academy of Science, the 2010 IEEE Region 5 Outstanding
Member Award, the 2006 IEEE Power and Energy Society Outstanding Young
Engineer Award, and the 2003 International Neural Network Society’s Young
Investigator Award. He is the recipient of the 2012 Institution of Engineering
and Technology (IET) Generation, Transmission and Distribution Premier
Award for the best research paper published during last two years for the
paper “Wide area control for improving stability of a power system with
plug-in electric vehicles.”

Dr. Venayagamoorthy is involved in the leadership and organization of
many conferences including the co-Chair of the 2013 IEEE Symposium
of Computational Intelligence Applications in Smart Grid (CIASG). He is
currently the Chair of the IEEE PES Working Group on Intelligent Control
Systems, the Founder and Chair of IEEE Computational Intelligence Society
(CIS) Task Force on Smart Grid, and the Chair of the IEEE PES Intelligent
Systems Subcommittee. He is currently an Editor of the IEEE Transactions
on Smart Grid.

Dr. Venayagamoorthy is a Fellow of the IET, UK, and the South African
Institute of Electrical Engineers (SAIEE).

