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a b s t r a c t

The application of a spiking neural network (SNN) and a multi-layer perceptron (MLP) for online
identification of generator dynamics in a multimachine power system are compared in this paper. An
integrate-and-fire model of an SNN which communicates information via the inter-spike interval is
applied. The neural network identifiers are used to predict the speed and terminal voltage deviations
one time-step ahead of generators in a multimachine power system. The SNN is developed in two steps:
(i) neuron centers determined by offline k-means clustering and (ii) output weights obtained by online
training. The sensitivity of the SNN to the neuron centers determined in the first step is evaluated on
generators of different ratings and parameters. Performances of the SNN and MLP are compared to
evaluate robustness on the identification of generator dynamics under small and large disturbances, and
to illustrate that SNNs are capable of learning nonlinear dynamics of complex systems.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Online identification of generator speed and terminal voltage
characteristics is verymuch essential for fast, intelligent and adap-
tive control in today’s power system (Singh & Venayagamoorthy,
2002). Classical controllers for generators are generally designed
based on linearizedmodels obtained around somenominal operat-
ing point. But, in a real world power system, the environment con-
tinuously changes and a generator’s dynamics also change since it
is an integrated part of the power system (Park, Venayagamoorthy,
& Harley, 2005). In these situations, the performance of classical
controllers such as an automatic voltage regulator (AVR) generally
degrades, and intelligent AVR designs are called for. A Neural Net-
work (NN) is a very effective tool for designing these types of in-
telligent controllers. In order to take the correct control action in a
dynamically changing environment, an NN based controller needs
a neuroidentifier, which provides an estimation of the speed and
terminal voltage characteristics of a generator from past values of
speed and terminal voltage. The method of neuroidentification is
also very effective for wide area monitoring and control (Venayag-
amoorthy, 2007) and finding dynamic equivalents of large power
systems (Azmy, Erlich, & Sowa, 2004; Stankovic, Sarik, &Milosevic,
2003).
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So far, different types of neural network architectures and their
performances have been studied for the purpose of neuroidentifi-
cation (Azmy et al., 2004; Park et al., 2005; Singh &Venayagamoor-
thy, 2002; Venayagamoorthy, 2007). This includes Multilayer
Perceptrons (MLPs), Radial Basis Functions (RBFs), Recurrent Neu-
ral Networks (RNNs), and Echo-State Networks (ESNs). But with
the advancement of neuroscience it has become clear that none of
these networks actually represents the structure and function of
biological neurons (Mishra, Yadav, Ray, & Kalra, 2007).
In a traditional neural network, a complete set of inputs is fed

into the network, each neuron is allowed to activate once, and a
single set of outputs is produced in a single time slice. There is
no master clock; the network operates in time steps defined by
these samples of inputs and their resulting outputs. The biological
neuron (and any network based thereon), however, operates in
continuous time. Inputs come in as a string of voltage spikes called
‘‘action potentials’’. A traditional artificial neuron uses weighted
multipliers and simple summation to generate a net input value
for an activation function, whose output is the neuron’s output.
Inputs and outputs are real-valued numbers. A biological neuron
receives the action potentials, which drive up the voltage on its
main body’s membrane. The voltage on the main body (called the
‘‘soma’’) decays quickly, but if enough spikes arrive (usually from
multiple neurons) in a short enough period of time, the biological
neuron fires (Mishra et al., 2007).
The artificial neuron designed to more closely model those

found in biological systems is known as a spiking neuron, and a
network based upon this type of neuron is referred to as Spiking
Neural Network (SNN). First proposed in the Hodgekins/Huxley
model in 1959 (Mishra et al., 2007), an artificial spiking neuron
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Fig. 1. A spiking neuron model used in the SNN. The inputs to the network are real-valued, and the firing rate serves as a real-valued output.
poses several problems for use: encoding/decoding of information,
control of information flow, and computational complexity.
Because of all of the variables that must be tracked in a faithful
digital modeling of a biological neuron – most notably an internal
clock that tracks how long it has been since the last spike, and
constant monitoring of the current membrane potential at the
current time – it can be far more computationally costly than
a traditional neuron. The methods of encoding real values into
spike trains include temporal encoding – the time between spikes
(referred to as the Inter-Spike Interval, or ISI) or the time-to-
next-spike (Iannella & Back, 1999; Rowcliffe & Feng, 2008) – and
probability-based encoding. In Rowcliffe and Feng (2008), the
model of the spiking neuron abstracts the spiking function by
finding the mean and standard deviation of the voltage potential
in the soma. It is this design of spiking neuron that is used
successfully in Johnson, Venayagamoorthy, and Mitra (2009) as
a neuroidentifier to estimate the speed and terminal voltage
characteristics of a single generator in a multimachine power
system. SNN is shown to perform quite well, promising to be an
effective choice in use as a model for one-step-ahead prediction.
This paper extends upon the study in Johnson et al. (2009).

Both an SNN and an MLP are fed newly generated data from
two generators of different ratings and parameters in an IEEE 10-
machine-39-bus New England power system. Using three past-
time-step values of terminal voltage deviation and speeddeviation,
the SNN is trained to predict these values one-step-ahead. The
performance of the SNN and the MLP are compared, and the SNN’s
robustness is shown by its ability to perform on more than one
generator and its operating points. In addition, Johnson et al. (2009)
and Rowcliffe and Feng (2008) discuss the similarities of the SNN
design to that of an RBF; this paper examines the sensitivity of the
SNN to its ‘‘centers’’ when identifying dynamics of generators of
different ratings and parameters on amultimachine power system.
The rest of the paper is organized as follows: Section 2 presents

the fundamentals of an SNN, Section 3 discusses the structure
SNN based neuroidentifier, Section 4 shows typical and finally, the
conclusion and scope of future work are presented in Section 5.

2. A spiking neuron model

The difficulty in encoding based directly on firing time, or any
other temporal method, lies in the necessity not only of a master
clock to keep track of when each spike is fired, when each spike
is received, and the potential voltage in the soma of the artificial
neuron at any given point in time, but in determiningwhen a single
complete set of inputs have been passed in, and when a single
complete set of outputs have been received. The mean firing time
encoding method eliminates this problem by abstracting the spike
times, freeing the artificial SNN to operate in epochs just like a
traditional network. This somewhat reduces the spiking neuron
model to a complicated activation function, but the performance
is still quite rich, with a great deal more flexibility and adaptability
than in more traditional neuron models.
The model introduced in Rowcliffe and Feng (2008) and

expanded upon in this paper is used in a feedforward network,
and is explained here. The inputs from the previous layer (whether
other neurons or the external real-valued inputs to the SNN) are
collected and aggregated by (1) and (2) to generate the mean µi
and standard deviation σi of the membrane potential for neuron
i over a given time-slice represented by a single sample of inputs
and outputs.

µi =

n∑
j=1

(λj − λ
i)wij(1− r) (1)
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i)w2ij
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i
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i
)
wijwih(1+ r). (2)

The jth input into the SNN is λj, α is a tuning constant greater
than 0, and r is the ratio of excitatory to inhibitory inputs. The
superscripted λ values are centers, used to offset a given neuron
in much the way a radial basis function (RBF) works. The weights
connecting neuron j to input i are given by wij, with ρ the
correlation factor between neurons j and h (whose connections
to input i are given by wih). This unique structure allows for an
equal number of excitatory and inhibitory inputs (caused when
r = 1) to not completely damp out the neuron’s ability to generate
meaningful output (Rowcliffe & Feng, 2008). The inputs, once
converted to mean and standard deviations of voltage spikes, are
used to generate the limits of integration that determine the ISI of
the neuron, which is finally converted into a firing rate that serves
as the real-numbered output, as shown in Fig. 1.
When r = 1, the output of the single neuron using two inputs

and outputs is a paraboloid, as shown in Fig. 2. By varying r , the
output range of the neuron can be altered significantly. However,
this output structure resembles an RBF neuron with a Gaussian
activation function closely enough that, for the experiments in this
paper, the value for r is left at 1.
The actual output of the neuron is the ‘‘firing rate’’, which

serves as the real value the neuron is to be calculating, with
no further decoding necessary. To determine this firing rate,
two more pieces of information are required: the ISI and the
‘‘refractory period’’ Tref . After a biological neuron fires off a spike
due to having its membrane’s threshold potential exceeded, the
membrane is actually at a lower potential than its resting potential.
The refractory period is the amount of time it takes for this
potential to rise back to the resting state, and, in this model, is a
user-set parameter.
The ISI is given by (3), with g(x) being Dawson’s Integral (given

in (4)). The relaxation period of the neuron – how long it takes for
a spike’s influence on the membrane potential to fade – is given
by τ . Vrest and Vthresh are the resting and threshold potentials of the
membrane, respectively.

ISI =
2
τ

∫ Vthreshτ−µi
σi

Vrest τ−µi
σi

g(x)dx (3)

g(x) = ex
2
∫ x

0
e−u

2
du. (4)
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Fig. 2. Output of a spiking neuron with r = 1 and α = 2, with λ1 and λ2 varying
independently from−2 to 2 with a step size of 0.01.

Fig. 3. Error function (bold line) and the Dawson Integral (light line).

Dawson’s integral, however, is not a direct analytical calcula-
tion. It must be found individually for each given point x, integrat-
ing over dummy variable u, which is most easily done with the
Maclaurin series expansion. Because of this, it is impossible to an-
alytically perform the integral necessary in (4), and so the Matlab
code used to run the experiments in this paper used a Riemann
Sum to approximate the integral. Further, becauseMatlab does not
have a built-in Dawson’s Integral function, it was found to improve
performance speed to use the error function erf (x), given in (5), in-
stead. This has the same shape, with only a slightly different ampli-
tude, as Dawson’s Integral, and worked quite well as a substitute.
Fig. 3 shows the comparison of the two.

erf (x) =
2
√
π

∫ x

0
e−tdt. (5)

Finally, the output of a spiking neuron (the firing rate) is
calculated by using the ISIas determined in (3), and is given by (6).

fi(λ) =
1

Tref + ISI
. (6)

Spiking neurons constructed in this manner are used as the
hidden layer neurons in a feedforward network. The input layer
consists of linear neurons that provide direct inputs to the network,
and the output layer consists of a number of linear weighted-sum
neurons equal to the number of desired outputs. It is worth noting
Table 1
Operating points of the generators on the IEEE 39 machine power system.

G2 G3 G4 G5 G6 G7 G8 G9 G10

P (p.u.) 0.86 0.85 0.90 0.83 0.81 0.85 0.82 0.72 0.83
Q (p.u) 0.32 0.26 0.17 0.27 0.25 0.16 0.01 0.02 0.47
V (p.u) 0.9992 0.984 0.9977 1.013 1.052 1.067 1.028 1.027 1.049

that only the weights between the hidden layer and the output
layer (output weights) are trained in this kind of network. The
weights between the input layer and hidden layer (input weights)
are set, in this experiment, to a constant value of 0.5. The reduction
in the number of weights that need to learn greatly simplifies
training, and had no deleterious effect on the performance of the
network.
In contrast with the MLP, which relies on backpropagation to

learn the weights (both input and output), training of the SNN is
conducted only on the output weights, and is accomplished via
simple gradient-descent learning much like RBF network training
(Park et al., 2005) by calculating the error between the desired out-
put and the actual output as shown in (7). In the work done here,
the dynamics being identified are the terminal voltage deviation
1V̂t(k) and the speed deviation 1ω̂(k). The input weights are all
set to 0.5.

Error =
{
1Vt(k)−1V̂t(k)
1ω(k)−1ω̂(k).

(7)

The change in the output weight (from hidden neuron i to
output neuron l) at instant k is given in (8) and (9). The learning
rate is denoted by lr.

1wli(k) = lr × Errorl(k)× fi(λ) (8)
wli(k+ 1) = wli(k)+1wli(k). (9)

3. SNN based neuroidentifier

A neural network provides a solution for modeling complex,
fast-changing multiple-input/multiple-output (MIMO) systems.
SNN-based neuroidentifiers are used to learn the dynamics of
generators G7 and G10 on the IEEE 39 bus system, as shown in
Fig. 4. The real and reactive power outputs (P and Q , respectively)
and terminal voltage of each generator in Fig. 4 is shown in Table 1
in per-unit (p.u.). G1 is an infinite bus, and is not listed in the
table.
A neuroidentifier is used to predict the terminal voltage de-

viation and speed deviation of generators G10, connected to bus
30, and G7, connected to bus 36, based on past values at instants
(k−1), (k−2), (k−3). A standard feedforwardMLP network is also
trained as a neuroidentifier to do the same.MLP networks arewell-
established archetypes, and thus serve as a good base line to which
to compare the SNN. TheMLP is trained using the backpropagation
algorithm, whereas the SNN output weights are determined using
a simple gradient-descent algorithm (Fig. 5). The SNN centers λi (in
(1)) are selected using the offline method of k-means clustering.
The multimachine power system shown in Fig. 4 is modeled

on a Real Time Digital Simulator (RTDS), with the generators at
the operating points shown in Table 1. The objective of the
neuroidentifier in this paper is to estimate the speed and terminal
voltage of generators G10 and G7 at kth instant (V̂t(k) and ω̂(k))
based on the deviation in the speed and terminal voltage at the
(k−1), (k−2), (k−3) instances:1Vt(k−1),1Vt(k−2),1Vt(k−3),
and 1ω (k − 1), 1ω (k − 1), 1ω (k − 1). The neuroidentifier can
then provide information to a controller to respond adaptively to
changing environmental conditions by predicting the deviations
due to given inputs and compensating for them preemptively.
The parameters associated with the SNN are given in Table 2 and
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Fig. 4. Schematic of the IEEE 10 generator 39 bus system with SNN-based neuroidentifiers on generators G7 and G10.
Fig. 5. (a) Diagram of feedforward neural network with spiking neurons in the hidden layer. All input neurons from input j to hidden neuron i are set to 0.5, and are not
trained. (b) Diagram of feedforwardMLP neural networkwith sigmoidal activation functions. Inputweights are trained using the backpropagation algorithm. Outputweights
are trained via gradient descent.
Table 2
Parameters for SNN neuroidentifier.

Spiking neural network parameter Spiking neural network parameter value

Number of inputs 9
Number of outputs 2
Number of neurons 20
α 2
ρ 1
τ rand
r 1
Learning gain (η) 0.01
Tref 0.5
Vrest 0
Vthresh 1

explained in great detail in Rowcliffe and Feng (2008). Briefly,
however, α is a tuning factor, ρ is the interconnectivity of neural
links, and τ is a factor reflecting how quickly the soma of the
simulated neuron drains charge. The values for each of these
parameters in this paper were 2, 1, and randomly chosen on
the interval [0, 1], respectively. The parameters not taken from
Rowcliffe and Feng (2008) were either dictated by the form of the
problem or found with some trial-and-error in order to optimize
just enough to get good results. Optimizing these parameters is
beyond the scope of this paper and is left for later work. The MLP
parameters are asmuch the sameas possible to those shown for the
SNN in Table 2 in order to best compare their performance, though
theMLPuses a sigmoidal activation function (10) in its hidden layer
neurons, and thus lacks the various parameters relevant to the SNN
activation function. The input and output weights of the MLP are
trained via a backpropagation algorithmmore fully detailed in Park
et al. (2005), which contains a thorough comparison of MLP and
RBF performance on similar power system dynamics.

f (λi) =
1

1+ e−wijλi
. (10)

4. Results and discussion

The three main things studied here are the performance of the
SNN in comparison to the MLP on forced training of the system
dynamics via PRBS, a comparison of the SNN to the MLP on natural
training of the system dynamics with both one- and three-phase-
to-ground faults, and an experiment testing the robustness of the
SNN when used on different generators with different operating
points and parameters. That last experiment specifically explores
the sensitivity of the SNN to the choice of neuron centers by
utilizing three distinct sets of centers for the SNN: one set is
chosen using data taken from generator G7, one set is chosen using
data taken from generator G10, and one set is chosen using the
combined data sets.

4.1. Forced training

In forced training, a Pseudo Random Binary Signal (PRBS),
bounded within the range of ±15% of the normal excitation
voltage signal, is applied at the input to the excitation system of
the generator whose dynamics are being learned. This method
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Fig. 6. G7 forced training of the MLP. The signals and their estimations are scaled
up by a factor of 10 to allow the neuroidentifier a palatable scale. (a) Estimation of
terminal voltage (10×p.u.); (b) estimation of speed (10×p.u.); (c) %-error between
estimated and actual terminal voltages; (d) %-error between estimated and actual
speeds. The thin, black lines in (a) and (b) are target values, and the thick, gray lines
are the SNN’s estimation.

Fig. 7. G7 forced training of an SNN using its own centers. The signals and their
estimations are scaled up by a factor of 10 to allow the neuroidentifier a palatable
scale. (a) Estimation of terminal voltage (10 × p.u.); (b) estimation of speed
(10×p.u.); (c) %-error between estimated and actual terminal voltages; (d) %-error
between estimated and actual speeds. The thin, black lines in (a) and (b) are target
values, and the thick, gray lines are the SNN’s estimation.

forces all of the harmonic modes of the generator to become
active, at least briefly, providing a strong overview of the dynamic
properties of the system to the neuroidentifier. This property
makes it desirable for the initial training of the neuroidentifier, and
also provides a good basis for testing the overall performance of
a neuroidentifier under varying parameters. In particular, forced
Table 3
Mean and standard deviations of G7 terminal voltage deviations errors for different
numbers of hidden neurons taken over 30 runs.

Number of
neurons

SNN, specialized
centers

SNN, generalized
centers

MLP

Mean
error

Std. dev. of
error

Mean
error

Std. dev. of
error

Mean
error

Std. dev. of
error

5 0.5538 0.4724 0.2376 0.3773 1.1357 0.8041
10 0.4066 0.3550 0.1356 0.2730 1.1360 0.8046
15 0.3036 0.2908 0.0978 0.2315 1.1357 0.8043
20 0.2542 0.2592 0.0900 0.2226 1.1360 0.8046
30 0.2159 0.2354 0.0770 0.208 1.1358 0.8046

Table 4
Mean and standard deviations of G7 speed deviations errors for different numbers
of hidden neurons taken over 30 runs.

Number of
neurons

SNN, specialized
centers

SNN, generalized
centers

MLP

Mean
error

Std. dev. of
error

Mean
error

Std. dev. of
error

Mean
error

Std. dev. of
error

5 0.0118 0.0183 0.0126 0.0204 0.0214 0.0319
10 0.0082 0.0155 0.0081 0.0150 0.0194 0.0286
15 0.0073 0.0151 0.0065 0.0128 0.0178 0.0262
20 0.0069 0.0130 0.0061 0.0142 0.0162 0.0242
30 0.0064 0.0134 0.0053 0.0118 0.0136 0.0206

training is used here to compare the performance of the SNN
and MLP with differing numbers of neurons in the hidden layer.
Tables 3 and 4 show the average %-error, as calculated in (11),
during online forced training data taken from G7 for several
different numbers of hidden neurons in both the SNN and theMLP.
Only G7 is shown in these tables to save space; the trends on G10
are similar.

%error =
∣∣∣∣actual− estimatedactual

∣∣∣∣× 100%. (11)

Because the initialweights, before training, are randomly deter-
mined, the mean training and testing errors are the average taken
over 30 trial runs, and the standard deviations for training and test-
ing are shown, as well. Table 3 compares these errors for terminal
voltage deviation prediction for generator G7 between the results
from the SNN with specialized centers determined solely from the
data taken fromgenerator G7 itself, the SNNusing generalized cen-
ters taken from data collected from both generators, and the MLP.
Table 4 compares these same values for the speed deviation. In all
cases, %-error is calculated as shown in (11).
In all cases, more neurons lead to lower average errors and

more consistency of results during online training. However, the
more hidden neurons are in the network, the longer it takes
to execute each epoch. The results shown in Figs. 6–13 and
15–18 used 20 neurons in the hidden layer, as more than that
caused dramatic enough slowdown as to interfere with real-
time prediction. The limiting factor when the neuroidentifier is
implemented in hardware for real-world use will be the real time
requirement. Twenty neurons are found to balance the speed of
calculation with good performance. A quick glance at Tables 3 and
4, comparing the MLP’s consistency and precision to those of the
SNN, reveals that the MLP has a higher average error than does
either SNN, though its consistency is greater (as shown by the
standard deviations). The units of all values in these tables are
given in per-unit (p.u.).
Forced training is performed with data points sampled over

60 s at a sample rate of 50 Hz. The results of forced training of
the MLP on generator G7 is shown in Fig. 6, and on the SNN in
Fig. 7. Figs. 8 and 9 show the results of forced training on both
kinds of neuroidentifier for generator G10. With both generators,
the SNN demonstratesmuchmore faithful identification than does
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Fig. 8. G10 forced training of the MLP. The signals and their estimations are scaled
up by a factor of 10 to allow the neuroidentifier a palatable scale. (a) Estimation of
terminal voltage (10×p.u.); (b) estimation of speed (10×p.u.); (c) %-error between
estimated and actual terminal voltages; (d) %-error between estimated and actual
speeds. The thin, black lines in (a) and (b) are target values, and the thick, gray lines
are the SNN’s estimation.

Fig. 9. G10 forced training of an SNN using its own centers. The signals and
their estimations are scaled up by a factor of 10 to allow the neuroidentifier a
palatable scale. (a) Estimation of terminal voltage (10×p.u.); (b) estimation of speed
(10×p.u.); (c) %-error between estimated and actual terminal voltages; (d) %-error
between estimated and actual speeds. The thin, black lines in (a) and (b) are target
values, and the thick, gray lines are the SNN’s estimation.

the MLP, both by visual inspection of the distinction between the
predicted and actual values, and by examination of the %-error,
which is noticeably lower in the SNN for both generator speed and
terminal voltage.
Fig. 10. G7 natural training of theMLP. The signals and their estimations are scaled
up by a factor of 10 to allow the neuroidentifier a palatable scale. (a) Estimation of
terminal voltage (10×p.u.); (b) estimation of speed (10×p.u.); (c) %-error between
estimated and actual terminal voltages; (d) %-error between estimated and actual
speeds. The thin, black lines in (a) and (b) are target values, and the thick, gray lines
are the SNN’s estimation.

Fig. 11. G7 natural training of the SNN using its own centers. The signals and
their estimations are scaled up by a factor of 10 to allow the neuroidentifier a
palatable scale. (a) Estimation of terminal voltage (10×p.u.); (b) estimation of speed
(10×p.u.); (c) %-error between estimated and actual terminal voltages; (d) %-error
between estimated and actual speeds. The thin, black lines in (a) and (b) are target
values, and the thick, gray lines are the SNN’s estimation.

4.2. Natural training

Natural training data for both generators consists of two natural
faults: a one phase-to-ground fault, followed ten seconds later
by a three phase-to-ground fault. These faults are applied at the
nearest bus to the generator in question (bus 30 for G10, and bus
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Fig. 12. G10 natural training of the MLP. The signals and their estimations
are scaled up by a factor of 10 to allow the neuroidentifier a palatable scale.
(a) Estimation of terminal voltage (10× p.u.); (b) estimation of speed (10× p.u.);
(c) %-error between estimated and actual terminal voltages; (d) %-error between
estimated and actual speeds. The thin, black lines in (a) and (b) are target values,
and the thick, gray lines are the SNN’s estimation.

33 for G7). A time period of 10 s is allowed before another fault
is applied (or measurement ceased) in order for the system to
settle. The deviations in the excitation voltage, speed and terminal
voltage deviations of the generators are recorded. Natural faults
cause rapid transitions of the system through several nonlinear
operating points. It is thus highly important that a neuroidentifier
be able to identify the system dynamics during such a fault.
As can be seen in Figs. 10 and 11, which show the faults applied

to generator G7 for both the MLP and the SNN, and in Figs. 12 and
13, which show the same for generator G10, once again the SNN
outperforms theMLP in terms of precision in both visual inspection
and examination of the %-error, which is uniformly lower for
the SNN than for the MLP. Here, however, the improvement in
performance is even more pronounced than with forced training.

4.3. SNN sensitivity to choice of centers

The SNN’s sensitivity to its centers, and thus how dependent it
is on a given generator’s dynamics, is studied by training an SNN
on two different generators. These generators (G7 and G10) have
already been used to demonstrate that the SNN (like the MLP) is
equally capable under different operating conditions and dynamic
parameters, though in Figs. 7, 9, 11 and 13, the centers for the SNN
were chosen based solely on the data from the specific generators.
In other words, the SNNs were customized for the given generator.
In this section, the centers are found using k-means clustering of
the pre-obtained data points from G10 and G7 combined. Fig. 14
shows the centers for all three SNNs.
Because the input weights of the SNN are fixed, they are

identical on any SNN created. The centers shown in Fig. 14 for
the union of the data sets are used identically in the SNN for
both G10 and G7; only the output weights and the input signals
are different. The performance of generators G7 and G10 under
forced training with the generalized centers is shown in Figs. 15
and 16, respectively. Figs. 17 and 18 show the results of natural
Fig. 13. G10 natural training of the SNN using its own centers. The signals and
their estimations are scaled up by a factor of 10 to allow the neuroidentifier a
palatable scale. (a) Estimation of terminal voltage (10×p.u.); (b) estimation of speed
(10×p.u.); (c) %-error between estimated and actual terminal voltages; (d) %-error
between estimated and actual speeds. The thin, black lines in (a) and (b) are target
values, and the thick, gray lines are the SNN’s estimation.

training on the same generators with the same generalized center
sets. A comparison of Figs. 15–18 with Figs. 7, 9, 11 and 13 shows
no degradation of performance when non-specialized centers are
used.
Therefore, not only is the SNN robust enough to operate

on different generators with different operating conditions and
system dynamics, but it requires only that its output weights
differ for each system on which it is trained. This minimizes the
necessary memory for each unique network. Combined with the
rapidity with which the SNN adapts from randomly determined
weights to accurate identification of system dynamics, this means
that the same SNN may be used with confidence on multiple
generators.

4.4. Discussion of results

With randomly initialized outputweights, the %-error for forced
training starts near 5%, and becomes very small for terminal
voltage estimation in all cases, and the %-error of the speed
estimations for the same training never really rise above 0.4%.
Natural faults generate higher terminal voltage estimation error
percentages, climbing up to 40% during the one- and three-phase
faults themselves, but dropping immediately back down below
10% even as the system recovers. The speed estimations never
quite reach 1% error even during the faults. Thus, for online
training, the SNN is very promising. The MLP, in contrast, has a
noticeable lag time as it learns the dynamics before it is capable of
faithfully following them, and it never achieves quite the precision
of the SNN.
As shown in Section 4.3, the SNN is not overly sensitive to

the choice of centers. This could be partially due to the fact
that, as can be seen in Fig. 6, the centers generated by the
data from G10 and from G7 are in roughly the same areas, as,
consequently, are centers generated from a union of those data
points. Thus, the SNN is at least robust enough that a set of centers
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Fig. 14. Centers for 20 neurons in the hidden layer of an SNN determined via k-means clustering on data samples taken from generator G10 (red triangles) and generator
G7 (blue stars), and combined data samples (green circles).
Fig. 15. G7 forced training of the SNN using data from both G7 and G10 to
generate centers. Compare to Fig. 7. The signals and their estimations are scaled
up by a factor of 10 to allow the neuroidentifier a palatable scale. (a) Estimation of
terminal voltage (10×p.u.); (b) estimation of speed (10× p.u.); (c) %-error between
estimated and actual terminal voltages; (d) %-error between estimated and actual
speeds. The thin, black lines in (a) and (b) are target values, and the thick, gray lines
are the SNN’s estimation.

generated frompreviously-obtained data on allmachines onwhich
it will be used can be used across the board, with only different
output weights necessary for each generator. Moreover, the speed
with which it learns the characteristics of the system from any
distribution of initial output weights allows for the same SNN to
be transported with confidence between generators with differing
operating points and parameters. The SNN is, then, robust enough
to operate on multiple generators.
Overall, the SNN is better at adapting and predicting the

terminal voltage deviations and speed deviations of the generators
than is theMLP during online training, and can operate on different
generators with different operating points and parameters. This
Fig. 16. G10 forced training of an SNN using data from both G7 and G10 to
generate centers. Compare to Fig. 9. The signals and their estimations are scaled
up by a factor of 10 to allow the neuroidentifier a palatable scale. (a) Estimation of
terminal voltage (10×p.u.); (b) estimation of speed (10× p.u.); (c) %-error between
estimated and actual terminal voltages; (d) %-error between estimated and actual
speeds. The thin, black lines in (a) and (b) are target values, and the thick, gray lines
are the SNN’s estimation.

represents a step forward from the work done in Johnson et al.
(2009), and shows that the SNN is not limited to only one narrow
range, but can be trained to operate under different conditions.

5. Conclusion and future work

Presented in this paper is an SNN-based neuroidentifier to
model and predict the behavior of speed deviation and terminal
voltage deviation of generators in a multimachine power system.
The SNN is trained online, for both small and large perturbations
in the power system. The spiking neural network is known
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Fig. 17. G7 natural training of the SNN using data from both G7 and G10 to
generate centers. Compare Fig. 11. The signals and their estimations are scaled up
by a factor of 10 to allow the neuroidentifier a palatable scale. (a) Estimation of
terminal voltage (10×p.u.); (b) estimation of speed (10×p.u.); (c) %-error between
estimated and actual terminal voltages; (d) %-error between estimated and actual
speeds. The thin, black lines in (a) and (b) are target values, and the thick, gray lines
are the SNN’s estimation.

to have, under an excitatory to inhibitory input ratio of 1:1,
characteristics reminiscent of a radial basis function network,
though its closer relationship to the biological neuron offers the
potential for greater complexity and therefore more effective
modeling of other functions. The SNN neuroidentifier presented
here proved capable of identifying the speed and terminal voltage
deviations of generators, and did so better than a traditional MLP
trained on the same power system. While a direct comparison of
the SNN to the RBF remains a subject of future research, Park et al.
(2005) comparesMLP and RBF neural networks on similar systems.

This work has demonstrated that an SNN is both competitive
with an MLP for online identification of complex systems, and
that an SNN is easily adaptable to learn other power system
generator dynamics by only adjusting its output weights Online
neuroidentification of generator characteristics on amultimachine
power system has been achieved, showcasing the potential of
this third-generation neural network design. Work is currently
being done to test the SNN on different power systems, including
different operating points to further explore just how robust the
SNN is as a neuroidentifier. Implementation in hardware capable
of reading real-time signals generated by a real-time power
system simulator (and thus able to operate on a real power grid,
whichproduces the same signals) is also envisaged, which will
make this SNN-based neuroidentifier a useful tool for creating and
adapting controllers for generators on the power grid.
Fig. 18. G10 natural training of the SNN using data from both G7 and G10 to
generate centers. Compare to Fig. 13. The signals and their estimations are scaled
up by a factor of 10 to allow the neuroidentifier a palatable scale. (a) Estimation of
terminal voltage (10×p.u.); (b) estimation of speed (10× p.u.); (c) %-error between
estimated and actual terminal voltages; (d) %-error between estimated and actual
speeds. The thin, black lines in (a) and (b) are target values, and the thick, gray lines
are the SNN’s estimation.
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