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a b s t r a c t

A gridable vehicle (GV) can be used as a small portable power plant (S3P) to enhance the security and
reliability of utility grids. Vehicle-to-grid (V2G) technology has drawn great interest in the recent years
and its success depends on intelligent scheduling of GVs or S3Ps in constrained parking lots. V2G can
reduce dependencies on small expensive units in existing power systems, resulting in reduced operation
cost and emissions. It can also increase reserve and reliability of existing power systems. Intelligent unit
commitment (UC) with V2G for cost and emission optimization in power system is presented in this paper.
As number of gridable vehicles in V2G is much higher than small units of existing systems, UC with V2G
is more complex than basic UC for only thermal units. Particle swarm optimization (PSO) is proposed to
balance between cost and emission reductions for UC with V2G. PSO can reliably and accurately solve this
complex constrained optimization problem easily and quickly. In the proposed solution model, binary
PSO optimizes on/off states of power generating units easily. Vehicles are presented by integer numbers
instead of zeros and ones to reduce the dimension of the problem. Balanced hybrid PSO optimizes the
number of gridable vehicles of V2G in the constrained parking lots. Balanced PSO provides a balance

between local and global searching abilities, and finds a balance in reducing both operation cost and
emission. Results show a considerable amount of cost and emission reduction with intelligent UC with

lity o
V2G. Finally, the practica

. Introduction

The power and energy industry – in terms of (a) economic
mportance and (b) environmental impact – is one of the most
mportant sectors in the world since nearly every aspect of indus-
rial productivity and daily life are dependent on electricity. Unit
ommitment (UC) involves cost efficient scheduling (on/off states)
f available generating resources in a system. Various numerical
ptimization techniques have been employed to approach the UC
roblem. Priority list methods [1] are very fast; however, they are
ighly heuristic. Branch-and-bound methods [2,3] have the dan-
er of a deficiency of storage capacity. Lagrangian relaxation (LR)
ethods [4–6] concentrate on finding an appropriate co-ordination

echnique for generating feasible primal solutions, while minimiz-

ng the duality gap. The main problem with an LR method is the
ifficulty encountered in obtaining feasible solutions. The meta-
euristic methods [7–18] are iterative techniques that can search
ot only local optimal solutions but also a global optimal solu-
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f UC with V2G is discussed for real-world applications.
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tion depending on problem domain and execution time limit. In
the meta-heuristic methods, the techniques frequently applied to
the UC problem are genetic algorithm (GA), tabu search, evolu-
tionary programming (EP), simulated annealing (SA), etc. They are
general-purpose searching techniques. However, difficulties are
their sensitivity to the choice of parameters, balance between local
and global searching abilities, etc. There are also two popular swarm
inspired methods in the field of computational intelligence: Parti-
cle swarm optimization (PSO) and ant colony optimization (ACO).
ACO was pioneered by Dorigo et al. [15] from the inspiration of
food-seeking behavior of real ants. It is a memory and computa-
tional intensive algorithm especially when dealing with large-scale
optimization problems. However, PSO is simpler, and requires less
memory and computational time.

The power and energy industry represents a major portion of
global emission, which is responsible for 40% of the global CO2
production followed by the transportation sector (24%) [19]. The
estimated costs of an unabated climate change are as much as
20% of the global domestic product (GDP). However, by taking
the appropriate measurements these costs could be limited to

around 1% of GDP [20]. Climate change caused by greenhouse
gas (GHG) emissions is now widely accepted as a real condition
that has potentially serious consequences for human society and
industries need to factor this into their strategic plans [21]. So envi-
ronment friendly modern planning is essential. However, power

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:aysaber@ieee.org
mailto:gkumar@ieee.org
dx.doi.org/10.1016/j.jpowsour.2009.08.035
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ystems researchers have addressed only traditional UC problems
o minimize cost in the existing articles. They have never included
mission in unit commitment problems, though it is an important
actor as mentioned above. Some researchers have included emis-
ion in economic dispatch problems only (not in unit commitment)
22,23].

Vehicle-to-grid (V2G) researchers have mainly concentrated on
nterconnection of energy storage of vehicles and grid [24–30].
heir goals are to educate about the environmental and economic
enefits of V2G and enhance the product market. However, success
f V2G technology greatly depends on the efficient scheduling of
ridable vehicles in limited and restricted parking lots.

Ideally gridable vehicles for V2G technology should be charged
rom renewable sources. A gridable vehicle can act as a small
ortable power plant (S3P). An intelligent scheduling of S3Ps and
onventional generating units can reduce operation cost and emis-
ion. In this paper, unit commitment with vehicle-to-grid (UC–V2G)
s introduced where UC–V2G involves intelligently scheduling
xisting units and large number of gridable vehicles in limited
nd restricted parking lots. It reduces both operation cost and
mission with proper and intelligent optimization. In addition
o fulfilling a large number of practical constraints, the opti-

al UC–V2G should meet the forecast load demand calculated in
dvance, parking lot limitations, state of charge of gridable vehicles,
harging–discharging efficiency, spinning reserve requirements,
tc. at every time interval such that the total operation cost and
mission are minimal. The overall objective is to reduce bad envi-
onmental effects such as carbon emissions and to increase profit.
he optimization of UC–V2G is a combinatorial optimization prob-
em with both binary and continuous variables. The number of
ombinations of generating units and gridable vehicles grows expo-
entially in UC–V2G problems. Unit commitment with V2G is more
omplex than typical UC of conventional generating units, as num-
er of variables in UC with V2G is much higher than typical UC
roblems, and both cost and emission are minimized in the objec-
ive function of UC–V2G.

The proposed PSO based solution approach improves balance
etween local and global searching abilities, and balances reduction
etween operation cost and emission. Both cost and emission are
inimized for UC with V2G; in addition, reserve and reliability of

ower systems is increased, and the negative impact of climate
hange is decreased. This paper makes a bridge between UC and
2G research areas and considers UC with gridable vehicles in V2G

ramework. It extends the area of unit commitment bringing in the
2G technology and making it a success.

. UC–V2G problem formulation

.1. Nomenclature and acronyms

The following notations are used in this paper.

-s-houri cold start hour of ith unit
-costi hot start-up cost of ith unit
-costi cold start-up cost of ith unit
(t) load demand at time t

scheduling hours
i(t) ith unit status at hour t (1/0 for on/off)
Ui/MDi minimum up/down time of unit i

number of units

max
V2G(t) maximum number of discharging vehicles at hour t

V2G(t) no. of vehicles connected to the grid at hour t
max
V2G total vehicles in the system
i(t) output power of ith unit at time t
max/min
i

maximum/minimum output limit of ith unit
f Power Sources 195 (2010) 898–911 899

Pmax
i

(t) maximum output power of unit i at time t considering
ramp rate

Pmin
i

(t) minimum output power of unit i at time t considering
ramp rate

Pv capacity of each vehicle
R(t) system reserve requirement at hour t
RURi ramp up rate of unit i
RDRi ramp down rate of unit i
S3P small portable power plant
Xon
i

(t) duration of continuously on of unit i at time t

Xoff
i

(t) duration of continuously off of unit i at time t
FCi() fuel cost function of unit i
SCi() start-up cost function of unit i
ECi() emission cost function of unit i
� state of charge
� efficiency

2.2. Objective function

Usually large cheap units are used to satisfy base load demand
of a system. Most of the time, large units are therefore on and they
have slower ramp rates. On the other hand, small units have rel-
atively faster ramp rates. Besides, each unit has different cost and
emission characteristics that depend on amount of power genera-
tion, fuel type, generator unit size, technology and so on. In UC with
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.2. Data structure

In the proposed method, each PSO particle has the following
elds for the V2G scheduling problem, Particle Pi {Generating unit:
nN ×H binary matrix Xi; Vehicle: AnH × 1 integer column vector
i; Velocity: An (N + 1) ×H real-valued matrix Vi; Fitness: A real-
alued cost TC;}.

PSO can easily optimize an N ×H binary matrix for generating
nits because possible state of a generating unit is either 1 or 0 only.
n the other hand, basic PSO has less balance between local and
lobal searching abilities for the optimization of an H × 1 integer
olumn vector for gridable vehicles, as possible number of con-
ected gridable vehicles varies from 0 to NmaxV2G(t) at hour t. The
uthors have used binary PSO for the optimization of generating
nits and balanced (regulated) PSO for the optimization of gridable
ehicles of V2G.

Besides, some extra storage is needed for pbesti, gbest and tem-
orary variables, which is acceptable and under typical computer
emory limit. For the UC with V2G problem, dimension of a particle
is (N + 1) ×H. Dimensions of location and velocity are presented

y three indices as xijt and vijt , respectively in the rest of the paper
or simplicity where i = particle number, j = generating unit/no. of
ehicles and t = time.

.3. Binary PSO for generating units

Scheduling of thermal units is a binary optimization problem.
continuous searching space can be converted to a valid binary

earching space by a probability distribution. To extend the real-
alued PSO to binary space, the authors calculate probability from
he velocity to determine whether xijt will be in on or off (0/1) state.
n (18), U(0,1) generates a real number between 0 and 1.

ijt = 4.0, if vijt > 4.0. (16)

r(vijt) = 1
1 + exp(−vijt)

. (17)

ijt =
{

1, ifU(0,1)< Pr(vijt)
0, otherwise.

(18)

.4. Balanced PSO for V2G vehicles

Number of connected vehicles to grid is presented by an inte-
er number instead of zero or one for each vehicle to reduce the
imension of the problem. At each hour, optimal number of grid-
ble vehicles is needed to determine so that the operating cost and
mission are minimum. In the proposed balanced PSO, changes
f velocity depend on iteration. To make a fine tuning (balance)
n complex searching space, initially velocity changes rapidly for
lobal search and then velocity changes slowly for local search. A
alancing factor is included in velocity calculation (the last term of
19)). Integer number of vehicles is formulated by rounding off the
eal value of a new particle location in balanced PSO.

ijt = [vijt + c1 × rand1 × (pbestijt − xijt) + c2 × rand2

× (gbestjt − xijt)]
[

1 + −Range
Max Ite

(Ite− 1)
]
. (19)

ijt = xijt + vijt . (20)
ijt = round (xijt). (21)

ijt = NmaxV2G(t), if xijt > N
max
V2G(t). (22)

ijt = 0, if xijt < 0. (23)
f Power Sources 195 (2010) 898–911 901

3.5. Proposed algorithm for UC with V2G

In the same algorithm, binary PSO is applied for the optimization
of generating units and balanced PSO is applied for the optimization
of gridable vehicles as below. Flowchart of the proposed method is
shown in Fig. 1.

(1) Initialize. Initialize a (N + 1) ×H matrix for each particle ran-
domly. Set parameters of binary PSO and balanced PSO. Select
pbest and gbest locations. Take some temporary variables.

(2) Move. For each particle in the current swarm, calculate velocity
and location in all dimensions. Apply binary PSO (14, 16–18)
on N ×H binary matrix for generating units and balanced PSO
(19–23) on H × 1 column vector for gridable vehicles in the
same model. Merge the outputs of binary PSO and balanced
PSO.

(3) Repair and calculate economic dispatch. Check each particle for
all the constraints (6–13). Repair each particle location if any
constraint is violated there. Then, calculate economic dispatch
(see Section 3.7) of feasible particle locations (solutions) only.
It accelerates the process.

(4) Evaluate fitness. Evaluate each feasible location in the swarm
using the objective function. According to the operators’
demand, price and (or) emission are considered in the fitness
function. Update pbest and gbest locations.

(5) Check and stop/continue. Print the gbest solution and stop if
maximum number of iterations (Max Ite) is reached; otherwise
increase current iteration number and go back to Step (2).

3.6. Constraints management

Stochastic random PSO particles (solutions) do not always sat-
isfy all the constraints. Constraints are handled in two ways – direct
repair and indirect penalty methods [8]. A direct repair for the
constraints of UC with V2G is given below.

(i) If total number of vehicles is not satisfied, difference between
left and right sides of (6) is randomly distributed among 24 h.

(ii) System power balance, generation limit and ramp rate con-
straints are satisfied in ED of UC with V2G.

(iii) Nearest (upper/lower) valid limit is assigned for inequality
constraints.

The above repair accelerates convergence. If solutions are still
invalid after repair, penalty is added to discourage the invalid solu-
tions.

3.7. ED calculation

Load demand is distributed among generating units and selected
number of gridable vehicles. It is the most computational intensive
part of UC with V2G. Capacity of each vehicle is constant (Pv). At
hour t, if schedule is [I1(t), I2(t), . . . , IN(t),NV2G(t)]T then power
from vehicles is � × NV2G(t) × Pv × (1 −� ) and the remaining
demand [D(t) − � × NV2G(t) × Pv × (1 −� )] is fulfilled by running
units of schedule [I1(t), I2(t), . . . , IN(t)]T . Lambda iteration is used
to calculate economic dispatch (ED) here. An intelligent method
may be used to improve the solution quality.

4. Results and discussion
All calculations have been run on Intel(R) Core(TM)2 Duo
2.66 GHz CPU, 3 GB RAM, Microsoft Windows XP OS and Visual C++
compiler. A 10-unit system is considered for simulation with 50,000
gridable vehicles, which are charged from renewable sources. Vehi-



902 A.Y. Saber, G.K. Venayagamoorthy / Journal of Power Sources 195 (2010) 898–911

d bin

c
g
e
a
R
g
c
a
o
p
s

t
b
2
c
a
a
f
o

(
a
r
u
v
(
$
c
V
(
t

w
i
q
i
s
m
t
e
c

description visually. So V2G increases reliability of the system as
well.

Cost and emission are also tested separately as a fitness func-
tion of the same system. Table 3 shows the results when only
cost (fuel cost plus start-up cost) is considered in the fitness

Fig. 2. Cost plus emission in fitness function of UC with V2G.
Fig. 1. Algorithmic flowchart of the propose

les are charged from renewable sources and they discharge to the
rid so that the total running cost and emission are minimal; how-
ver, the load demand and constraints are fulfilled. Load demand
nd unit characteristics of the 10-unit system are collected from
ef. [14]. Emission coefficients and penalty factor equation are
iven in Appendix A. In order to perform simulations on the same
ondition of Refs. [7,9–11,14], the spinning reserve requirement is
ssumed to be 10% of the load demand, cold start-up cost is double
f hot start-up cost, and total scheduling period is 24 h. The pro-
osed method is stochastic and convergence depends on proper
etting of parameter values.

Parameter values are SwarmSize = 30; MaxIterations=1000;
rust parameters c1=1.5, c2=2.5; total number of vehicles = 50,000;
alance of search, Range = 0.6; maximum battery capacity =
5 kWh; minimum battery capacity = 10 kWh; average battery
apacity, Pv = 15 kWh; maximum number of discharging vehicles
t each hour, NmaxV2G(t) = 10% of total vehicles; total number of grid-
ble vehicles in the system, NmaxV2G = 50,000; charging–discharging
requency = 1 per day; scheduling period = 24 h; departure state
f charge, � = 50%; efficiency, � = 85%.

In fitness function, both cost and emission are considered
i.e., Wc = 1 and We = 1) and randomly selected results with
nd without gridable vehicles are shown in Tables 1 and 2,
espectively. Running cost is $559,367.06 (fuel cost plus start-
p cost) and emission is 257,391.18 tons when 50,000 gridable
ehicles are considered in the 10-unit system during 24 h
Table 1). On the other hand, running cost and emission are
565,325.94 and 260,066.35 tons, respectively when gridable vehi-
les are not considered in the same system (Table 2). Thus
2G saves ($565,325.94 − $559,367.06=) $5958.88 and reduces

260,066.35 − 257,391.18 tons=) 2676.17 tons emission per day in
he 10-unit small system.

Effect of both cost and emission in fitness function of UC
ith V2G is shown in Fig. 2. Though value of fitness function

s continuously decreasing, individual cost and emission are fre-
uently fluctuating (both increasing and decreasing) up to 200

terations. In the proposed method, variations of cost and emis-
ion are small, and finally both production cost and emission are

oderate after program execution. From Fig. 2, emission varia-

ion is higher than cost variation because values of second order
mission coefficients are much higher than that of fuel cost coeffi-
ients.
ary PSO and balanced PSO for UC with V2G.

According to Tables 1 and 2, emission is always lower; however,
maximum capacity of the system and reserve are always higher
(except at 4th hour) when gridable vehicles are considered in unit
commitment with V2G. Only at 4th hour, reserve is lower and emis-
sion is higher, which are tolerable, as spinning reserve (10%) is
satisfied; however, it is happened because the method is stochastic
and it makes balance between cost and emission optimization. Min-
imum reserve is 124.3 MW at 24th hour using gridable vehicles in
V2G technology and it is 110.0 MW at the same hour without using
V2G. Average reserve is 213.60 MW using V2G technology and it
is only 185.70 MW without using V2G. Figs. 3–5 give a detailed
Fig. 3. Maximum capacity with and without V2G.
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Table 1
Schedule and dispatch of generating units and gridable vehicles for 10-unit system with 50,000 gridable vehicles (both cost and emission are considered in the fitness function).

Time (h) U-1 (MW) U-2 (MW) U-3 (MW) U-4 (MW) U-5 (MW) U-6 (MW) U-7 (MW) U-8 (MW) U-9 (MW) U-10
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Table 2
Schedule and dispatch of generating units without gridable vehicles for 10-unit system (both cost and emission are considered in the fitness function).

Time (h) U-1 (MW) U-2 (MW) U-3 (MW) U-4 (MW) U-5 (MW) U-6 (MW) U-7 (MW) U-8 (MW) U-9 (MW) U-10 (MW) V2G/S3P (MW) Emission
(ton)

Maximum
capacity
(MW)

Demand
(MW)

Reserve
(MW)

1 455.0 244.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 6,827.0 910.0 700.0 210.0
2 455.0 295.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 7,547.2 910.0 750.0 160.0
3 455.0 265.0 0.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 7,728.0 1040.0 850.0 190.0
4 455.0 235.0 130.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 7,965.0 1170.0 950.0 220.0
5 455.0 285.0 130.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 8,653.9 1170.0 1000.0 170.0
6 455.0 359.9 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 0.00 10,225.6 1332.0 1100.0 232.0
7 455.0 410.0 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 0.00 11,304.6 1332.0 1150.0 182.0
8 455.0 455.0 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 0.00 12,410.0 1332.0 1200.0 132.0
9 455.0 455.0 130.0 130.0 84.9 20.0 25.0 0.0 0.0 0.0 0.00 12,927.2 1497.0 1300.0 197.0

10 455.0 455.0 130.0 130.0 162.0 32.9 25.0 10.0 0.0 0.0 0.00 13,557.8 1552.0 1400.0 152.0
11 455.0 455.0 130.0 130.0 162.0 72.9 25.0 10.0 10.0 0.0 0.00 13,866.1 1607.0 1450.0 157.0
12 455.0 455.0 130.0 130.0 162.0 80.0 25.0 42.9 10.0 10.0 0.00 14,153.7 1662.0 1500.0 162.0
13 455.0 455.0 130.0 130.0 162.0 32.9 25.0 10.0 0.0 0.0 0.00 13,557.8 1552.0 1400.0 152.0
14 455.0 455.0 130.0 130.0 84.9 20.0 25.0 0.0 0.0 0.0 0.00 12,927.2 1497.0 1300.0 197.0
15 455.0 455.0 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 0.00 12,410.0 1332.0 1200.0 132.0
16 455.0 309.9 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 0.00 9,302.4 1332.0 1050.0 282.0
17 455.0 260.0 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 0.00 8,536.1 1332.0 1000.0 332.0
18 455.0 359.9 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 0.00 10,225.6 1332.0 1100.0 232.0
19 455.0 455.0 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 0.00 12,410.0 1332.0 1200.0 132.0
20 455.0 455.0 130.0 130.0 162.0 32.9 25.0 10.0 0.0 0.0 0.00 13,557.8 1552.0 1400.0 152.0
21 455.0 455.0 130.0 130.0 84.9 20.0 25.0 0.0 0.0 0.0 0.00 12,927.2 1497.0 1300.0 197.0
22 455.0 340.1 130.0 130.0 0.0 20.0 25.0 0.0 0.0 0.0 0.00 10,112.7 1335.0 1100.0 235.0
23 455.0 315.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 8,510.3 1040.0 900.0 140.0
24 455.0 345.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 8,423.3 910.0 800.0 110.0

Total emission = 260,066.35 ton. Total running cost = $565,325.94 (fuel cost plus start-up cost).
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Table 3
Schedule and dispatch of generating units and gridable vehicles for 10-unit system with 50,000 gridable vehicles (only cost is considered in the fitness function).

Time (h) U-1 (MW) U-2 (MW) U-3 (MW) U-4 (MW) U-5 (MW) U-6 (MW) U-7 (MW) U-8 (MW) U-9 (MW) U-10 (MW) V2G/S3P
(MW)

No. of
vehicles

Emission
(ton)

Maximum
capacity
(MW)

Demand
(MW)

Reserve
(MW)

1 455.0 235.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.45 1482 6,708.6 928.9 700.0 228.9
2 455.0 287.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.16 1123 7,434.3 924.3 750.0 174.3
3 455.0 249.4 130.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.54 2438 7,516.6 1071.1 850.0 221.1
4 455.0 355.9 130.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.08 1424 9,266.5 1058.2 950.0 108.2
5 455.0 383.8 130.0 0.0 25.0 0.0 0.0 0.0 0.0 0.0 6.16 967 10,088.6 1214.3 1000.0 214.3
6 455.0 348.5 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 11.46 1798 10,000.2 1354.9 1100.0 254.9
7 455.0 397.9 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 12.04 1889 11,030.4 1356.1 1150.0 206.1
8 455.0 445.7 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 14.30 2243 12,170.4 1360.6 1200.0 160.6
9 455.0 455.0 130.0 130.0 65.6 20.0 25.0 0.0 0.0 0.0 19.37 3038 12,900.7 1535.7 1300.0 235.7

10 455.0 455.0 130.0 130.0 154.8 20.0 25.0 10.0 0.0 0.0 20.11 3154 13,532.7 1592.2 1400.0 192.2
11 455.0 455.0 130.0 130.0 162.0 53.5 25.0 10.0 10.0 0.0 19.48 3055 13,855.7 1646.0 1450.0 196.0
12 455.0 455.0 130.0 130.0 162.0 80.0 25.0 10.0 10.0 10.0 23.31 3656 14,201.1 1708.6 1500.0 208.6
13 455.0 455.0 130.0 130.0 154.7 20.0 25.0 10.0 0.0 0.0 20.25 3176 13,531.8 1592.5 1400.0 192.5
14 455.0 455.0 130.0 130.0 62.7 20.0 25.0 0.0 0.0 0.0 22.23 3487 12,899.0 1541.5 1300.0 241.5
15 455.0 449.8 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 10.12 1588 12,276.9 1352.2 1200.0 152.2
16 455.0 301.0 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 8.99 1410 9,153.6 1350.0 1050.0 300.0
17 455.0 250.2 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 9.75 1529 8,404.7 1351.5 1000.0 351.5
18 455.0 349.1 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 10.89 1709 10,011.2 1353.8 1100.0 253.8
19 455.0 430.5 130.0 130.0 25.0 0.0 25.0 0.0 0.0 0.0 4.55 714 12,054.3 1426.1 1200.0 226.1
20 455.0 455.0 130.0 130.0 151.8 20.0 25.0 10.0 0.0 0.0 23.10 3623 13,512.6 1598.2 1400.0 198.2
21 455.0 455.0 130.0 130.0 74.5 20.0 25.0 0.0 0.0 0.0 10.39 1630 12,909.8 1517.8 1300.0 217.8
22 455.0 353.8 130.0 130.0 0.0 20.0 0.0 0.0 0.0 0.0 11.17 1752 10,114.9 1272.3 1100.0 172.3
23 455.0 306.9 0.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 8.05 1263 8,373.6 1056.1 900.0 156.1
24 455.0 333.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.81 1852 8,202.2 933.6 800.0 133.6

Total running cost = $558,003.01 (fuel cost plus start-up cost). Total emission = 260,150.45 ton.
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Fig. 4. Reserve power with and without V2G.
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Fig. 5. Emission with and without V2G.

unction (i.e., Wc = 1 and We = 0). Using the proposed method,
unning cost is $558,003.01 where all the constraints are sat-
sfied and for this running cost, emission is 260,150.45 tons.
herefore the cost is reduced by ($559,367.06 − $558,003.01=)
1364.05 and for the $1364.05 cost reduction, emission is increased
y (260,150.45 − 257,391.18 tons =) 2759.27 tons. According to
able 3, most of the time large cheap units are running; large
mount of power is delivered from V2G at peak load hours; emis-
ion is always high; and reserve, cost are low. Effect of only cost
n fitness function of UC with V2G is shown in Fig. 6. Cost is con-
inuously decreasing; however, emission is fluctuating up to 200
terations. From Fig. 6, variations of emission and total cost are
igh when only fuel cost is considered in the fitness function and
s the cost is low, emission is very high, which is not tolerable for
nvironment.

Similarly Table 4 shows the results when only emission is
onsidered in the fitness function (i.e., Wc = 0 and We = 1).
sing the proposed method, emission is 249,661.71 tons, where
nly emission is the fitness function and all constraints are ful-
lled; however, running cost is $570,754.78. Therefore emission

s reduced by (257,391.18 − 249,661.71 tons=) 7729.47 tons; how-
ver, cost is increased by ($570,754.78 − $559,367.06=) $11,387.72
or the small system. From Table 4, sometimes small expensive
nits are also committed even at off-peak load; power delivered

rom V2G does not vary greatly between peak and off-peak loads;
mission is always low; and reserve, cost are high. Effect of only
mission in fitness function of UC with V2G is shown in Fig. 7. Emis-
ion is rapidly decreasing; however, cost fluctuates slowly up to 500

Fig. 6. Cost in fitness function of UC with V2G.
Fig. 7. Emission in fitness function of UC with V2G.

iterations. As emission is low, the cost is high, which may not be
acceptable when only emission is considered in the fitness function
of UC with V2G.

Load curve of the 10-unit system has both peaks and val-
leys (Fig. 3). Emission comparison is shown in Fig. 8. Emission
is always high when only price is considered in the fitness
function to generate low cost schedule. On the other hand, emis-
sion is always low and cost is very high when only emission
is considered in the fitness function to generate environmen-
tal friendly schedule. However, difference is small at peaks
(12th and 20th h) and valleys (16th and 17th h) of the load
for the optimization method. From Tables 3 and 4, total emis-
sion is reduced by (260,150.45 − 249,661.71 tons=) 10,488.74 tons
per day or 3,828,390.1 tons per year and cost is increased by
($570,754.78 − $558,003.01=) $12,751.77 per day or $4,654,396.05
per year for different fitness functions. In the proposed method,
fitness function (5) is flexible using weights Wc and We for giving
precedence of cost and emission, respectively. For practical use,
values of Wc and We should be chosen carefully considering price,
environmental effects, consumers and system operators’ demand.

So there is a trade-off between cost and emission. However,
fitness function of unit commitment with V2G, considering both
cost and emission, can make a balance between the cost and emis-
sion where both cost and emission are moderate (Tables 1 and 2
and Fig. 2). Besides, V2G helps to reduce both cost and emission in
power systems (Tables 1 and 2). Therefore intelligent unit commit-
ment with V2G, for both cost and emission optimization, is essential
in power systems.

The main challenge of unit commitment is to properly schedule
small expensive units, as large cheap units are always on. Opera-
tors expect that large cheap units will mainly satisfy base load and

other small expensive units will fulfill fluctuating, peak loads. Grid-
able vehicles of V2G reduce dependencies on small expensive units.
Table 5 shows the effect of V2G on each unit considering both cost
and emission in the fitness function. Usually a negative value of
V2G effect indicates a relatively expensive (or more polluting) unit

Fig. 8. Emission comparison.
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Table 4
Schedule and dispatch of generating units and gridable vehicles for 10-unit system with 50,000 gridable vehicles (only emission is considered in the fitness function).

Time (h) U-1 (MW) U-2 (MW) U-3 (MW) U-4 (MW) U-5 (MW) U-6 (MW) U-7 (MW) U-8 (MW) U-9 (MW) U-10 (MW) V2G/S3P
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Table 5
Power from generating units during 24 h considering 50,000 gridable vehicles.

U-1 U-2 U-3 U-4 U-5 U-6 U-7 U-8 U-9 U-10 V2G/S3P

With V2G (MW) 10,920.0 8937.8 2340.0 2730.0 1241.9 282.4 225.0 73.0 20.0 10.0 318.8
1

N of V2
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Without V2G (MW) 10,920.0 9139.4 2470.0 2600.0

V2G effect (MW) 0.0 −201.6 −130.0 130.0

otes: V2G effect = results with V2G − results without V2G. Usually a negative value

n the system. In this instance U-1, U-7, U-9 and U-10 produce same
onstant powers, as U-1 is the cheapest unit and it always gener-
tes maximum power; however, U-7, U-9 and U-10 are expensive
nd they generate minimum power whenever they are committed.
-2, U-3, U-5, U-6 and U-8 generate less power (negative value of
2G effect) when V2G is considered, because they are either (rela-

ively) costly or more polluting units. In this instance U-4 generates
ore power (positive value of V2G effect) when V2G is considered,

ecause the proposed method makes balance between the cost and
mission, and it satisfies all the constraints of the system.

Number of vehicles connected to grid is not directly propor-
ional to the load demand. Schedule of vehicles (amount of power
elivered from V2G) depends on non-linear price curves, emis-
ion curves, load demand, constraints, fitness function and balance
etween cost and emission. The proposed method can handle these
actors efficiently and results are shown in Tables 1, 3 and 4. When
nly cost is considered, most of the vehicles are connected at peak
oads or concentrated at peak hours (see Table 3) where high cor-
elation between load demand and delivered power from V2G is
.70305. However, vehicles are intelligently distributed (not con-
entrated) during 24-h scheduling period where load demand and
elivered power from V2G are weakly correlated (0.079289) to
ake balance between cost and emission (see Table 1). Fig. 9 shows

his fact visually where both cost and emission are minimized.
Regarding the optimization algorithm, the proposed method

olves UC with V2G problem efficiently. Stochastic results are
hown in Table 6. The best, worst, and average findings of the pro-
osed method from 10 runs are reported together. Two sets of data
re given at each entry of the tables, as both cost and emission are
onsidered in the fitness function. First set is for cost and second set
s for emission. In each set, first element is the production cost and
econd element is emission for the production cost. For 10-unit sys-
em with 50,000 vehicles and 10% spinning reserve, best results is
559,685 production cost with 255,764 tons emission or $560,254
roduction cost with 255,206 tons emission. Both are considered
s best because first one is the lowest production cost and second
ne is the lowest emission. Results of different systems are also
ncluded in Table 6. For 20-unit system, the base 10-unit system is
uplicated (copied 2 times) and the load demand is multiplied by
wo. The system converges for both small and large units. According

o Table 6, a system with 5% spinning reserve needs less production
ost than the same system with 10% spinning reserve; however,
mission is near about the same and sometimes it is even higher
ecause emission coefficients of U-3 and U-4 are much higher than
thers. The system with lower spinning reserve (e.g., 5%) has lower

Fig. 9. Power delivered from V2G.
289.8 331.7 225.0 82.9 20.0 10.0 0.0

−47.9 −49.3 0 −9.9 0.0 0.0 318.8

G effect indicates an expensive or more polluting unit.

running cost; however, it is less reliable. The proposed method is
a generalized optimization method for UC with V2G. Thus it can
handle a new UC–V2G system of different input characteristics and
constraints.

So the system always converges. In the beginning, it converges
faster, then converges slowly at the middle of generation and
then very slowly or steady from the near final iterations (see
Figs. 2, 6 and 7). Therefore, the proposed PSO holds the above fine-
tuning characteristic of a good optimization method. The method is
stochastic; however, variation of results at different time is tolera-
ble and results are not biased. These facts strongly demonstrate the
robustness of the proposed method for optimization of both cost
and emission in UC with V2G.

Table 7 shows the comparison of the proposed method to
recent methods, e.g., integer-coded GA (ICGA) reported in Ref. [7],
Lagrangian relaxation and genetic algorithm (LRGA) reported in
Ref. [9], genetic algorithm (GA), dynamic programming (DP) and
Lagrangian relaxation (LR) reported in Ref. [10], evolutionary pro-
gramming (EP) reported in Ref. [11], and hybrid particle swarm
optimization (HPSO) reported in Ref. [14] with respect to the total
cost. “–” indicates that no result is reported in the correspond-
ing article. The proposed method is working properly, as results
are comparable with existing methods when only number of grid-
able vehicles is assigned to zero in the algorithm keeping all other
resources and constraints the same.

The proposed method is superior to other mentioned methods
in Table 7, because (a) the DP cannot search all the states of the V2G
scheduling; (b) it is very difficult to obtain feasible solutions and to
minimize the duality gap in LR for V2G scheduling; (c) most of the
cases, SA generates random infeasible solutions in each iteration by
a random bit flipping operation from the huge matrix of UC with
V2G; (d) PSO shares many common parts of GA, EP, etc.; however,
(i) it has better information sharing and conveying mechanisms
than GA, EP; (ii) it needs less memory and simple calculations; (iii)
it has no dimension limitation; (iv) it is easy to implement. The
proposed PSO generates little bit better results than HPSO just for
proper parameter settings, swarm size (in the proposed method,
swarm size is 30 instead of 20 in HPSO), ED calculations and efficient
programming.

Table 6 shows execution time of the proposed method. Exe-
cution time depends on algorithm, computer configuration and
efficient program coding. The proposed method is implemented
efficiently in Visual C++ and run on a modern (moderate speed) sys-
tem. Execution time is acceptable, as it is in second. Execution time
does not vary too much because swarm size and number of itera-
tions are the same for all the systems. However, it is faster when
gridable vehicles are considered because ED is the most computa-
tional expensive part of UC with V2G and less amount of power will
be dispatched from generating units which is usually faster to cal-
culate when gridable vehicles are connected. Execution time is not
exponentially growing with respect to the number of gridable vehi-
cles of V2G, as vehicles are treated as a cluster of integer number

of vehicles in the proposed method.

Battery size of an EV is larger than that of a HEV/PHEV. Perfor-
mance of each EV and HEV/PHEV affects the results of UC with V2G.
Results considering EVs (25 kWh each for around 100 miles drive)
or HEVs/PHEVs (average 10 kWh) are shown in Table 8. Emission
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and operation cost are lower; and maximum system capacity and
average reserve are higher when EVs are considered in the system.
However, EVs are more costly than HEVs.

5. Practicality of V2G for UC

For future practical applications, number of gridable vehicles
in an electric power network can be estimated analytically based
on number of electricity clients (customers) in that network. An
estimate of gridable vehicles from residential electricity clients may
be computed as follows:

NGV = NVUC–V2GVRECNREC = NVUC–V2GVRECXRLLmin
AVHLD

(24)

AVHLD = AVMEC
30 × 24

(25)

where NGV is the number of gridable vehicles (GVs), NVUC–V2G is
the percentage of the number of registered GVs for participation
in UC with V2G, VREC is the average number of gridable vehicles
per residential electricity client, NREC is the number of residential
electricity clients, XRL is the percentage of residential loads in the
power network, Lmin is the minimum load in the power network
at given time (MW), AVHLD is the average hourly load demand per
residential electricity client (kW), andAVMEC is the average monthly
electricity consumption per residential electricity client (kWh).

For example: the minimum load, Lmin, in the 10-unit bench-
mark system considered in this paper is 700 MW [14]. It can be
taken that the average monthly electricity consumption, AVMEC , of
a domestic home is about 1500 kWh [31]. Thus average hourly elec-
tricity load of a residential client, AVHLD, is 2.0833 kW. If we assume
that XRL = 30%, the total number of clients in the region NREC , is
100,801.6 and it can be rounded to 100,000 for simplicity. It is rea-
sonable to assume that in the future, in United States, VREC = 1,
i.e., on average there will be one gridable vehicle per residential
electricity client, and NVUC–V2G = 50%, i.e., 50% register to partici-
pant in “UC with V2G”. Thus, NGV from (24) is 50,000 and there are
a reasonable number of vehicles to be considered on the 10-unit
benchmark system for our simulation studies. Likewise, the 20-
unit system (double the size of the 10-unit system) with 100,000
gridable vehicles is considered in this paper to show scalability.

The average distance driven with a vehicle is about 20,000 km
per year [32], thus each day a vehicle covers an average distance
of 54.79 km (20,000/365) and takes roughly less than 2 h of travel
time. Therefore, it can be said that on average a vehicle is on the
road less than 10% of a day and it is parked more than 90% of a
day, either in a parking lot or in a home garage. Vehicles can be
controlled in UC with V2G during the 90% time of a day using an
automatic intelligent agent when they are parked. It is difficult to
determine whether a particular vehicle will be parked or on the
road at a particular time. Thus in this model, an individual vehicle is
not scheduled. However, UC with V2G determines number of vehi-
cles that need to be connected every hour for 24 h. It is logical that
most of the vehicles are parked and depending on the UC with V2G
schedule, committed number of vehicles (not specific vehicles) is
discharged using an intelligent autonomous agent, as enough num-
ber of gridable vehicles is in parking lots or in home garages. Instead
of considering individual vehicle, aggregation of vehicles can solve
the discharging control problem of mass number of vehicles in UC
with V2G. For reliable control operations, maximum number of dis-
charging vehicles limit constraint, given in (10), is imposed so that

number of scheduled vehicles at each hour is not too high with
respect to the total number of vehicles in the system, which is easy
to control. In order to illustrate the concept in this paper, maximum
10% of the vehicles are scheduled for discharging at each hour. This
percentage can be made to vary every hour depending on system,
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Table 7
Comparison of total running cost – ICGA, LRGA, GA, DP, LR, EP, AG, HPSO and the proposed PSO for 10-unit system.

Total cost ($)

ICGA LRGA GA DP LR

Best Worst Average Best Worst Average Best Worst Average Best Worst Average Best Worst Average

Without V2G – – 566,404 – – 564,800 565,825 570,032 – 565,825 N/A N/A 565,825 N/A N/A
With V2G – – – – –

Total cost ($)

EP AG HPSO Proposed PSO

age
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)

$ ton−1 (A.1)

where FC() and EC() are cost and emission functions, respectively.
Best Worst Average Best Worst Aver

Without V2G 564,551 566,231 565,352 – – 564,
With V2G – –

esired reliability, and operators’ demand. In Table 1, for the first
our, 2254 vehicles are scheduled for discharging and it is quite

easible that out of 50,000 vehicles at least 2254 vehicles will be
arked at this hour and an intelligent autonomous agent (not tra-
itional human control room operators) will be able to control the
ischarging of 2254 vehicles at the first hour. Similarly it is true
or other hours. It is not necessary to control all the vehicles (e.g.,
0,000 vehicles) at any given time; however, it is essential to control
ome percentage of vehicles at a time and this is possible. One vehi-
le may leave in the middle of the discharging operation and in this
ase, it will be substituted by another vehicle in a ‘parking’ status.

In the proposed model, only registered gridable vehicles will
e able to participate in UC with V2G. These registered vehicles
re in the ‘parking’ status when not in use (online), i.e., plugged
o the grid in parking lots or in home garages when stationary.
n intelligent autonomous agent will detect such vehicles when
nline and depending on their status and the current UC with V2G
chedule, vehicles will be selected to discharge automatically using
n automatic control system.

It has already been planned that one million plug-in hybrid and
lectric vehicles will be on the road by 2015 only in United States
33]. Success of the V2G technology depends on efficient scheduling
f gridable vehicles when mass number of gridable vehicles will be
n the road. Business models and profit for V2G has been reported
n Ref. [26]. In this model, a data base will be maintained for the
egistered vehicles including charging–discharging history. Own-
rs of the registered gridable vehicles will earn profit depending on
he amount of charging–discharging from their vehicles. Therefore
hey will be encouraged to take part in the UC with V2G process by
lugging in their vehicles and thus an automatic system will be able
o control scheduled number of vehicles for charging–discharging
perations. Systems with V2G will be more successful if real-time
on-linear price rate (different at daytime and night) is applied for
lectric energy at different time of a day.

UC is usually carried out for a period of 24 h and it is noted from
able 6 that the execution time with the balanced hybrid PSO for
C with V2G problem on a 20-unit system with 100,000 vehicles is
ess than 40 s on a standard desktop personal computer (2.66 GHz
PU, 3 GB RAM). Besides, it is seen that the balanced hybrid PSO
ethod always converges for UC with V2G. Thus, the UC with V2G

s practically feasible. However, a small computing cluster based
n graphic processing units (GPUs), e.g. a cluster of four GPUs, can

able 8
UC with V2G’ with EVs versus HEVs.

Parameter EV HEV

Running cost ($) 556,552.02 560,917.79
Emission (ton) 256,178.95 258,136.03
Maximum capacity (MW) 1708.6 1678.4
Average reserve (MW) 234.06 207.31
Best Worst Average Best Worst Average

563,942 565,785 564,772 563,741.8 565,443.3 564,743.5
– 554,509.5 559,987.8 557,584.4

speed up optimization by at least 50 times, thus reducing the execu-
tion time to less than a second, which is acceptable for all practical
and real-time solutions for UC with V2G problems.

6. Conclusion

This paper has made a bridge between researches on UC and
V2G, and is the first one to propose UC with gridable vehicles which
can be considered as small portable power plants. The V2G concept
can be viewed for the smart grid as S3P. Intelligent unit com-
mitment with V2G based on optimal operation cost and reduced
emissions in power system has been presented. This complex UC
with V2G optimization problem has been solved using a balanced
hybrid PSO, handling variables in binary and integer form. The local
and global search has been balanced, thus avoiding the possibility
of missing the best solution. From the results presented, it is clear
that UC with V2G reduces operational cost and emission. In addi-
tion, it increases profit, reserve and reliability. Finally, this study
is a first look at UC with V2G and in future, there is enough scope
to include other practical constraints of V2G technology and unit
commitment for real-world applications.

Acknowledgements

This work is supported by the U.S. National Science Foundation
(NSF) under NSF EFRI # 0836017 and the CAREER Grant ECCS #
0348221.

Appendix A. Emission characteristics

See Table A.1.
Emission penalty factor:
Table A.1
Generator emission coefficients.

Unit ˛i (ton h−1) ˇi (ton MW−1 h−1) �i (ton MW−2 h−1)

U-1 103.3908 −2.4444 0.0312
U-2 103.3908 −2.4444 0.0312
U-3 300.3910 −4.0695 0.0509
U-4 300.3910 −4.0695 0.0509
U-5 320.0006 −3.8132 0.0344
U-6 320.0006 −3.8132 0.0344
U-7 330.0056 −3.9023 0.0465
U-8 330.0056 −3.9023 0.0465
U-9 350.0056 −3.9524 0.0465
U-10 360.0012 −3.9864 0.0470
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