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a b s t r a c t

Echo State Networks (ESNs) have tremendous potential on a variety of problems if successfully designed.
The effects of varying two important ESN parameters, the spectral radius (α) and settling time (ST) are
studied in this letter. Spectral radius of an ESN is the maximum of all eigenvalues of the reservoir weights
whereas ST is measured by the number of iterations allowed in the reservoir after its excitation by an
input and before the sampling of the ESN output. The influence of these parameters on the performance
of an ESN is illustrated using three different types of problems. These problems include a function
approximation, a time series prediction and a complex system monitoring/estimation. An α of 0.8 gives
best result in all of these experiments and the performance of the ESN degradeswhen ST is increased. This
degradation in the ESN’s performance is due to the decaying of the echoes and attenuation in the reservoir.
The increase in ST adversely affects the ESN performance and as such no long-term echoing arrangement
is desired. Reducing ST greatly reduces the computational requirement making ESNs suitable even for
tasks that require a high frequency of operation.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Echo State Network (ESN) is a Recurrent Neural Network (RNN)
learning architecture characterized by a large randomly connected,
recurrent reservoir passively excited by the input signal such
that the network can be trained using the readout weights that
combine the desired output from the reservoir (Jaeger (2005)).
ESNs provide a novel and easier to manage approach to supervised
training of RNNs (Jaeger (2003)). Several learning algorithms are
known that incrementally adapt the synaptic weights of a RNN
to tune it towards the target system but such algorithms are
rarely used due to slow convergence and suboptimal performance
(Hass and Jaeger (2004)). The ESN differs from other algorithms in
two important ways: firstly, a large reservoir (50–1000 neurons)
is used and secondly, only the readout weights are updated
during learning as opposed to other algorithms that tune all
synaptic connections. These differences render ESN training into a
simple linear regression task. Details on ESN training are provided
in Jaeger (2002). The structure of an ESN is shown in Fig. 1.
The simplicity of ESN has led to its wide acceptance and several

applications have been reported since its introduction in 2001.
ESN has been used for motor control (Salmen and Ploger (2005)),
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nonlinear system identification (Jaeger (2003)), robotics (Jaeger,
Hertzberg, and Schonherr (2002); Xu, Lan, and Principe (2005)),
wide area monitoring of power systems (Venayagamoorthy
(2007)), motion identification (Ishu, van der Zant, Becanovic, and
Ploger (2004)), gait motion analysis (Noris et al. (2006)) and also
for saving energy in wireless sensor networks (Hass and Jaeger
(2004)). However, being a new technique, ESN has several issues
regarding appropriate selection of ESN parameters (Jaeger (2005))
and practicality (Prokhorov (2005)). While ESN offers a simple
method to deploy RNNs, it is agreed that it still requires further
research to make the design process straightforward and to make
ESN applicable in solving real-world problems.
H. Jaeger, the founder of ESN (Jaeger (2005)), identified the

following parameters to be appropriately selected for developing
an effective ESN: network size, spectral radius of reservoir weight
matrix and the scaling of the input. Aswith all other artificial neural
networks, choosing a right set of network parameters is important
for successful design of an ESN. In this letter, two important
parameters, the spectral radius and the settling time of the ESN
reservoir are varied to develop anunderstanding of their respective
importance in the design of ESN. The spectral radius (α) of an ESN
is the maximum of all eigenvalues of the reservoir weights. As
proposed in Jaeger (2002), the spectral radius of the ESN reservoir
should be between 0 and 1 to ensure that the network has the echo
state property. Settling Time (ST) is measured by the number of
iterations (echoes) allowed in the reservoir after its excitation by
an input and before the sampling of the output. A lower ST means
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Fig. 1. A typical ESN.

that the echoing is short termed or truncated and the output is
available immediately after the input is applied to the reservoir.
A higher ST means more echoing in the network and the output is
delayed.
By performing different case studies, the performance of ESN for

different problems is studied to develop heuristics for designing
ESN. In all of the studies discussed in this letter, the reservoir
size is kept constant at 50 nodes. Sigmoidal activation functions
are used in the reservoir nodes. The output nodes act only as
summation units. The input, reservoir and readout weights are
randomly initialized at the beginning of the training. The spectral
radius of the ESN reservoir is varied between 0.2 and 0.8, in steps
of 0.2. The readout weights are found using the gradient descent
learning rule in 100 iterations. With four different values for α
and two values for ST (one and five), a total of eight experiments
are carried out in each case study. In each experiment, ESNs are
trained and theMean Square Error (MSE) vs. training iteration plot
of over 10 trials is used to compare the learning performance of
the ESN.
2. Case study 1: Function approximation

In this case study, ESN is trained to approximate a two-
dimensional Sinc function as defined in (1)

f =
sin(x)× sin(y)

x× y
. (1)

Here, the spectral radius (α) is varied from 0.2 to 0.8 in steps
of 0.2. The ESN has two input nodes and one output node. The
ESN input during training is limited to between −10 to 10 and
is sampled at an interval of one. In addition to varying α of the
reservoir, the ST of the ESN is also experimented with. The ESN
is allowed to settle for certain number of iterations (one and five)
before reading the output of the ESN. For both values of ST, higher
values of α result in faster learning of the ESN. The increase in
settling time did not improve the learning rate of the ESN. Fig. 2
shows the training error for different combinations of α and ST.

3. Case study 2: Time series prediction

In this study, a single input single output ESN is used to predict
the standard Mackey–Glass time series. The task is to predict the
(τ + 6)th sample when the τ th sample is the input to the ESN. The
number of neurons in the reservoir is kept to 50 as in the first case
study. Similarly, α is varied from 0.2 to 0.8 and ST is changed from
one to five. Of the total 1200 time samples in the Mackey–Glass
time series test set, only the first 1000 samples are used in the ESN
training. The result of varying α and the ST is shown in Fig. 3. The
ESN training behavior is found to be almost identical for all possible
combinations of α and ST except for the fact that α = 0.8 led to
faster convergence in both cases. Fig. 4 shows the predicted series
from the actual series when α = 0.8 and ST=1.
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Fig. 2. ESN learning a two-dimensional Sinc function.
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Fig. 3. ESN learning the Mackey–Glass series.
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Fig. 4. Predicted and actual Mackey–Glass time series.
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Fig. 5. ESN for system monitoring/speed estimation.
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Fig. 6. Estimated speed deviations vs. actual speed deviations.

4. Case study 3: Complex systemmonitoring

In this study, the ESN is used for wide area system moni-
toring of the two-area power network as proposed in Venayag-
amoorthy (2007). The two-area power system consists of two fully
symmetrical areas tied together by two transmission lines. Each
area is equipped with two identical synchronous generators rated
20 kV/900MVA. All the generators are equippedwith two identical
speed governors and turbines, and voltage regulators and exciters,
as described in Venayagamoorthy (2007). Fig. 5 shows the two-
area power system and the ESN inputs for the estimation of four
generator speed deviations simultaneously. The power system is
simulated in real time on the Real Time Digital Simulator (RTDS)
(Forsyth, Maguire, and Kuffel (2004)). The ESN with α = 0.8 and
ST of one performed the best. Fig. 6 shows the performance of the
ESN (α = 0.8, ST=1) in estimating the speed deviations for all the
four generators simultaneously.

5. Conclusions

The results obtained in all the three case studies above are com-
parable and the performance of the echo state network improves
with higher spectral radius. Of the four values experimented for
spectral radius, α, 0.8 gives the best result in all the cases. The in-
crease in settling time however degraded the ESN performance in
all of the case studies. ESNs retain the impact of past inputs as the
echoes in the reservoir and thus are able to perform well in pre-
diction problems. When the ST is increased, the impact of the past
inputs decays and hence the learning of the network is compro-
mised. The results show thatα of 0.8 is optimal for use in designing
echo state networks and also that the increase in ST does not help
the network in learning but rather degrades the learning capability
of ESNs. This relieves the ESNs from the additional computational
complexity that would otherwise be required. The consistent re-
sults obtained by using the same set of parameters on a variety of
problems instills confidence in these conclusions made.
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