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Abstract—The main sources of emission today are from the
electric power and transportation sectors. One of the main goals
of a cyber-physical energy system (CPES) is the integration of
renewable energy sources and gridable vehicles (GVs) to max-
imize emission reduction. GVs can be used as loads, sources
and energy storages in CPES. A large CPES is very complex
considering all conventional and green distributed energy re-
sources, dynamic data from sensors, and smart operations (e.g.,
charging/discharging, control, etc.) from/to the grid to reduce
both cost and emission. If large number of GVs are connected
to the electric grid randomly, peak load will be very high. The
use of conventional thermal power plants will be economically
expensive and environmentally unfriendly to sustain the electrified
transportation. Intelligent scheduling and control of elements of
energy systems have great potential for evolving a sustainable
integrated electricity and transportation infrastructure. The
maximum utilization of renewable energy sources using GVs for
sustainable CPES (minimum cost and emission) is presented in
this paper. Three models are described and results of the smart
grid model show the highest potential for sustainability.

Index Terms—Cyber-physical energy systems, emission, grid-
able vehicles, load leveling, optimization, renewable energy, smart
grid.

NOMENCLATURE AND ACRONYMS

Pyina(t) Wind power at hour .

Piojar(t) Solar power at hour ¢.

FC() Fuel cost function.

SCi() Start-up cost function of unit <.
ECi() Emission cost function of unit z.
N Number of units.

H Scheduling period.

Li(t) On/oft state of unit ¢ at hour ¢.
Pi(t) Output power of unit ¢ at hour ¢.

pmax / min
%

Maximum/minimum output limit of unit s.
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D(¢) Load demand at hour .

R(t) System reserve requirement at hour .

c/h-cost; Cold/hot start cost of unit 2.

Wi, Wa, W3 Weights of fuel cost, start-up cost and
emission, respectively.

S3p Small portable power plant.

P, Capacity of each vehicle.

Nyag(t) Number of vehicles connected to the grid
at hour 7.

N5E Total registered GVs in the system.

V2G/G2V Vehicle-to-grid/grid-to-vehicle.

r Particle number.
Dimension of the problem.

k Iteration index.

) Battery charging time.

I. INTRODUCTION

ITH increasing concern over global climate change,
W policy makers are promoting renewable energy sources
(RESs) to meet emissions reduction targets. The alarming
rate, at which global energy reserves are depleting, is a major
worldwide concern at economic, environmental, industrial and
community levels [1]-[4]. A partial solution to this crisis is (i)
the use of decentralized renewable energy, and (ii) application
of plug-in vehicles with vehicle-to-grid (V2G) capability —
reported to as “gridable vehicles” (GVs). GVs are modified
version of plug-in hybrid electric vehicles (PHEVs) or elec-
tric vehicles (EVs) for next generation to spark a revolution
in the energy and transportation industries. For economical
importance, environmental impact and social motivation, new
generation vehicles (i.e., gridable vehicles) should have the
capability to charge/discharge from/to the grid respectively in
an intelligent manner that utilizes RESs efficiently.

The use of renewable energy may become attractive, es-
pecially if, customers would have to pay not only for the
cost of generation but also for transmission, distribution and
the indirect cost of environmental cleanup and health effects
[5]. Stimulated by recent technological developments, and
increasing concern over the sustainability and environmental
impact of fossil fuel usage, the prospect of producing clean and
sustainable power in substantial quantities from RESs arouses
interest around the world. Energy prices, supply uncertainties,
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and environmental concerns are driving the world to rethink
its energy mix and develop diverse sources of clean, renew-
able energy. Researchers are working toward generating more
energy from domestic resources that can be cost-effective and
replaced or renewed without contributing to climate change or
major adverse environmental impacts [6].

A technical report from National Renewable Energy Labora-
tory (NREL) has reported that there are significant reductions
in net CO5 emissions from PHEVs [7]. The combination of
fluctuating high oil costs, concerns about oil security and avail-
ability, and air quality issues related to vehicle emissions are
driving interest in PHEVs. The economic incentive for owners
to use electricity as fuel is the comparatively low cost of fuel.
Considering cost advantages, a study by the Electric Power Re-
search Institute (EPRI) found a significant potential market for
PHEVs [8]. However, use of PHEVs will increase the electric
load. Moreover, electrification of the transportation sector will
need not only the re-structuring of present gasoline stations but
also the modification of present electric power infrastructure.

A smart power system is adequate if there is a sufficient power
supply to meet customer needs with minimum cost and emis-
sion. In the future Cyber-Physical Energy Systems (CPES), GVs
should be charged from the grid with renewable sources at off-
peak hours and discharged to the grid at peak hours so that cost
and emissions are reduced. Researches on PHEVs and EVs are
described in [10]-[16]. However, PHEV's and EVs cannot alone
solve the emission problem completely, as they need electric
power which is one of the main sources of emission. Therefore,
success of practical application of PHEVs and EVs greatly de-
pends on the maximum utilization of renewable energy in CPES
so that the goal of emission and cost reductions from power sys-
tems and transportation sector is achieved. This model consist
of intelligent power supply with smart operations to meet cus-
tomer needs and choices with minimum cost and emissions in
this paper. PHEVs and EVs with additional vehicle-to-grid ca-
pability and renewable energy sources in CPES can help in this
issue. A dynamic optimization approach is needed to optimize
the time varying resources in CPES such as RESs and GVs.
Thus, a successful bridge can be made between power and trans-
portation infrastructures through GVs.

The authors have reported unit commitment with V2G in [17]
where the focus is mainly on cost, emission and cost-emission
optimizations. However, in this paper the focus is mainly on
smart charging-discharging operations of GVs and maximum
utilization of RESs in CPES. Cyber-physical systems refer to
the tight coupling of and coordination between computational
and physical resources. Thermal units, wind farm, solar farm
and GVs are the distributed physical resources considered in
the CPES model studied in this paper. Data such as available
wind power and solar power, state of charge (SoC) of GVs,
load profile, etc. are collected from sensors of the distributed
physical resources. On the cyber-side, intelligent computations
and decisions are carried out on the dynamic data of the above
mentioned physical resources for the maximum utilization of
renewable sources using GVs to reduce both cost and emission
in CPES.

The objective of a sustainable energy system is not only
meeting the present demand but also that of the future
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[18]-[21]. Such an energy system takes into consideration the
cost and availability of energy resources and their emission in
its framework. In this paper, a sustainable integrated electricity
and transportation infrastructure is studied and the primary
contributions and emphasizes are as follows: 1) illustration of
the effectiveness of RESs and GVs for a sustainable CPES; 2)
smart and flexible charging-discharging operations of GVs as
loads and sources to get benefits from GVs for energy storages
in a sustainable CPES; 3) maximum utilization of distributed
RESs to reduce emission in a sustainable CPES; and 4) intro-
duction of intelligent load leveling to reduce cost and emission
of a system.

The authors make a bridge in the paper between electricity
and transportation infrastructures through the sustainable CPES
infrastructure. The rest of the paper is organized as follows.
In Section II, problem model is formulated for power system
and transportation sectors. For proper utilization of resources,
and emission and cost minimizations, intelligent optimizations
are described in Section III. Input data and results are reported
and discussed in Section IV. Finally, the conclusion is given in
Section V.

II. PROBLEM FORMULATION IN CPES

Distributed RESs, GVs and conventional thermal power
plants are physical resources in a typical CPES. In the proposed
model: 1) RESs, mainly wind and solar, are used to reduce
emission from the power sector; 2) next generation GVs are
used to reduce emission from the transportation sector; 3) GVs
are smartly used as loads, storages and small portable power
plants (S3Ps); 4) parking lots are used as virtual power plants
(VPPs); and 5) an onboard system in a GV communicates with
utility, real-time pricing center, vehicle owner’s preferences,
vehicle battery’s SoC and so on. Based on dynamic data from
sensors of the large physical system and computations, an
optimization method generates intelligent schedules for proper
decisions, controls and smart operations in CPES. The system
uses GVs to maximize the usage of RESs in order to reduce
both electricity cost and emissions from the power and trans-
portation sectors in CPES.

The output of a solar photovoltaic (PV) panel depends on the
area of PV panel, solar insolation and the efficiency of the PV
panel. Typical efficiency is around 16%. The wind farm model
is somewhat more complex due to the mechanical nature of a
wind turbine. Generally, the power output of a wind turbine is
proportional to the kinetic energy, air density, etc. contained in
the wind. In some cases, manufacturer’s data sheet is also avail-
able. Other parameters of this wind turbine include the cut-in
wind speed, cut-out wind speed, and rated wind speed, where
typical values are 3.5, 25, and 14 m/s, respectively.

Wind and solar power may not be sufficient for all the load de-
mand. So, conventional units are also in the system. Wind and
solar power is emission free. However in power systems and
transportation sectors, the amount of carbon dioxide released is
proportion to the amount of carbon in the fuel and the quantity
of fuel burnt. Thus, a generation plant or vehicle that burns a
carbon-intensive fuel will generate more carbon dioxide at in-
creased levels of operation [22]. Other types of emissions (SO2,
NOy, etc.) are also produced from power generation systems
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and transportation sector. For environment friendly power pro-
duction, emission should be measured.

A linear model is used to calculate emission from vehicles of
transportation sector as follows:

SCq;(Lhei) = L,‘, X €; (1)

where £C() is emission function, L; is the length of travel by
vehicle ¢ in mile and e; is emission per mile from vehicle .

However, a nonlinear complex model is available for power
system. In this model, emission is expressed as a polynomial
function and order depends on desired accuracy. In this paper, a
quadratic function is considered for the emission curve as below
(23]

ECi(Pi(t)) = a; + BiPi(t) + i P (t) )

where «;, 3;, and ~y; are emission co-efficients of unit s.
Fuel cost of a thermal unit is typically expressed as a second-
order function of generated power of the unit

fCZ(Pl(t)) =a; + bZPZ(IL) + Cin(t) 3)

where a;, b;, and ¢; are positive fuel cost co-efficients of unit 4.

Start-up cost for restarting a decommitted thermal unit, which
is related to the temperature of the boiler, is included in the
model

h-cost;, if boiler temperature is higher
than a threshold
SCi(t) = e ) 4
®) c-cost;, if boiler temperature is @

lower than a threshold.

GVs are considered as loads or S3Ps. In the system consid-
ering GVs, power supplied from distributed generations must
satisfy the load demand and the system losses, which is defined
as

N
ZPi (t) + Pwina(t) + Psotar(t) + Py Nvag(t)
i=1

= D(t) + Losses, if GVs are S3Ps ®)
N
ZPL' (t) + Pwind(t) + Psolar(t)
i=1

= D(t) + P, Nvag(t) + Losses, if GVs are loads. (6)

Only registered gridable vehicles are considered for smart op-
erations. All registered vehicles take part in smart operations
during a predefined scheduling period

H
D Nvag(t) = Nisas. @)
t=1

To maintain system reliability, adequate spinning reserves are
required

N
Z Pimax(t) + Pwind(t) + Psolar(t) + P;’nax NVZG(t)
i=1

> D(t) + R(t), if GVs are S3Ps (8)

N
Z Pimax(t) + sznd(t) + Psolar (t> + Pénax NVZG(t)
i=1
> D(t) + R(t), if GVs are loads. )
Each unit has generation range, which is represented as

P < Py(t) < P (10)

Each vehicle has a desired departure state of charge level (V)
and charging/discharging inverter efficiencies are also consid-
ered in the model.

In the proposed model, reductions of emissions (2) and gen-
eration costs (3)—(4) are considered as objectives of CPES and
load balance (5)—(6), registered vehicles (7), reliability reserve
(8)—(9), generation limit (10), state of charge, battery efficiency,
parking lot limitation, etc. are constraints.

The multi-objective cost and emission reductions are solved
as a weighted aggregation form in this paper. Therefore, the
objective or fitness function for cost-emission optimization in
CPES is —

min {fuel cost, start-up cost, emission}

or

TC

N H
=3 "N {WIFCi(Pi(t) + WaSCi(t)(1 — Ii(t — 1))

+ Wath: ECi(P;(1)) (1) (1D
subject to (5)—(10) constraints.

Decision variables are I;(t), Puyind(t), Psolar(t) and
Nvyog(t). 1; is the emission penalty factor of unit ¢[17]. W,
W, and W4 are weights of fuel cost, start-up cost and emission
respectively.

III. CosT AND EMISSION OPTIMIZATION IN CPES

Cost and emissions are non-linear functions of generated
output power of thermal units in power system (2)—(3). Conven-
tional thermal units, GVs and RESs are considered in complex
multi-dimensional search space with hundreds of constraints in
CPES. Moreover, excess load for GVs should be intelligently
distributed to off-peak hours to level the demand. An optimiza-
tion method is required to intelligently handle the system in
CPES for maximum utilization of RESs in order to reduce both
cost and emission to an optimum level. Particle swarm opti-
mization (PSO) is used to minimize cost and emission in this
study because of its merits: 1) PSO can optimize binary, integer
and real decision variables; ii) it can handle constraints; iii) it
is easy to implement, fast and robust; and (iv) it has balance
between local and global search abilities. PSO is a bio-inspired
algorithm based on the behavior of flock of birds and school of
fish, and has similarities to other population based evolutionary
algorithms [24]. Each potential solution, called a particle, flies
in a multi-dimensional search space with a velocity, which is
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dynamically adjusted according to the flying experience of its
own and other particles.

PSO is an iterative method where velocity and position of
each particle are calculated as follows:

vpj(k + 1) = [v;(k) + c1 randy (pbest, j (k) — z,;(k))

+co rands(gbest j(k)—z,;(k))] [1—{—%([2&3—1)] . (12)

Binary PSO for conventional units:

1, ifU(1) <
0, otherwise.

N S
14+exp(—v,;(k+1))

13)

Lj(k+1) =z j(k+1) = {

Integer PSO for GVs:

Nvag,,; (k4 1) =2.(k + 1) =round(z,; (k) + vy (k 4+ 1)).

(14)

Real PSO for renewable sources:
Psolarrj :xrj(k + 1) = ‘T’l‘j(k:) + v”‘j(k + 1) (15)
Pwind,j = :l?rj(k =+ 1) = xrj(k) + ’Urj(k + 1). (16)

Here, a particle’s best position pbest, global best position
gbest, velocity v, position x, accelerating parameters c¢; and co,
particle no. r, problem dimension j (considering all resources
and scheduling period), and iteration index k are standard
terms of PSO [24]. I,.; and z,; are matrices of sizes H x N
and H x (N + 3) respectively. However, Ny-o¢, ; is a column
vector of Hx 1 integers for GVs that reduces dimension;
Psola”j is a column vector of size Hx 1 for solar power;
Pwmdw. is a column vector of size H x 1 for wind power; and
x = [I Nvag Psotar Puwind]. Conventional units, GVs and
RESs (wind and solar) are represented by different values of
dimension j in x. Ite, MaxIte and U(1) are current iteration,
maximum number of iterations, and a uniform number between
0 and 1 respectively. In the above velocity (12), the first term
indicates the current velocity of the particle (inertia term);
the second term presents the cognitive term of the particle
where the particle changes its velocity based on its own private
thinking and memory; and the third term is the social part
where the particle changes its velocity based on knowledge
derived from the interaction with other particles in the swarm.
The second part of (12) provides a balance between local and
global search abilities. Binary and integer PSOs are used in
order to reduce the search space dimension in this optimization
problem. Conventional units and GVs are represented by bi-
nary and integer numbers respectively. Binary PSO is used to
determine the optimal on/off states of conventional units (13).
Integer PSO is used to determine the optimal number of GVs in
the constrained system (14). Real PSO is used to determine the
optimal levels of solar and wind power (15)—(16). A flowchart
for minimization of cost and emission using GVs and RESs in
CPES is given in Fig. 1. Lambda iteration is used for dispatch
of the energy resources.

IV. RESULTS

An independent system operator (ISO) of 10-unit system is
considered for simulation with 50000 GVs. Load demand and
unit characteristics of the 10-unit system are collected from [25].
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Y
‘ Physical resources (wind, solar, GVs and conventional units) " TR .
. Physical : :
. resources : -
: ‘ Sensors 1‘ R :
I RS RS S AR E SRR R R AR SRR PR RE SR, R R R R LR R R R R AR AR A AR AR
: Collect dynamic changing data such as available wind power and solar :
power, SoC of GVs, and load profile from sensors of physical resources. '
‘ X
Y
‘ Apply binary PSO for conventional units and integer PSO for GVs.

In intelligent dynamic load leveling model, distribute excess load for GVs
dynamically to off-peak hours using stochastic optimization.
Or
In smart grid model, apply real PSO for optimum delivery of wind and solar
energy to the system with GVs consider forecast errors of RESs.

Y

‘ Repair solutions to satisfy constraints of GVs, loads, RESs and systems.

y

Calculate fast dispatch, cost, emission and finally weighted fitness for cost
and emission optimization. Update best particles.

No Max.

iterations?

Dispatch and implementation. ;’

Fig. 1. Flowchart for the maximum utilization of renewable energy sources in
CPES with GVs.

TABLE I
GENERATOR EMISSION CO-EFFICIENTS
Unit o Bi Yi
(ton/h) | (ton/MWh) | (ton/MWZ2h)
U-1 10.33908 -0.24444 0.00312
U-2 10.33908 -0.24444 0.00312
U-3 30.03910 -0.40695 0.00509
U-4 30.03910 -0.40695 0.00509
U-5 32.00006 -0.38132 0.00344
U-6 32.00006 -0.38132 0.00344
u-7 33.00056 -0.39023 0.00465
U-8 33.00056 -0.39023 0.00465
U-9 35.00056 -0.39524 0.00465
U-10 | 36.00012 -0.39864 0.00470
TABLE II
PLANT SIZE AND MAXIMUM CAPACITY (1662 MW) OF 10-UNIT SYSTEM
Unit1 | Unit2 | Unit3 [ Unit4 | Unit 5
P (MW) 455 455 130 130 162
P (MW) 150 150 20 20 25
Unit6 | Unit 7 | Unit 8 | Unit 9 | Unit 10
P (MW) 80 85 55 55 55
P (MW) 20 25 10 10 10

Emissions from coal-fired, petroleum and natural gas power
plants are quite different. It is assumed that conventional thermal
units are coal-fired because of low operational cost and their es-
timated emission co-efficients are given in Table 1. Plant data
is given in Table II. Three models are investigated to show the
effect of GVs in power systems and transportation sector.

e Case 1 — random model: GVs are charged/discharged
randomly;

e Case 2 —intelligent dynamic load leveling model: GVs are
charged from conventional generation using load leveling
optimization.

* Case 3 — smart grid model: GVs are charged from the grid
with renewable sources at off-peak hours and discharged
to the grid at peak hours.



SABER AND VENAYAGAMOORTHY: EFFICIENT UTILIZATION OF RESS BY GVS IN CPESS 289

Parameter values are —

estimated total number of vehicles in the system = 50, 000;
maximum battery capacity = 25 kWh;

minimum battery capacity = 10 kWh;

average Dbattery capacity, P, = 15  kWh;
charging-discharging frequency = 1 per day;
scheduling period = 24 h; departure state of charge,
U = 50%; efficiency, ¢ = 85% (in smart grid model);
weights Wiy = W, = W3 = 1 (equally important); for
PSO, swarm size = 30, iteration = 1,000 and accelerating
parameters c; = 1.5, ca = 2.5.

A. Random Model

If 50,000 GVs are connected to the grid randomly, roughly
an excess of (50,000 x 15 kWh =) 750-MWh power will be
needed for the small system of a city. No optimization method is
applied, as the system is fully random. In that system, peak load
will be approximately 50% more in the worst case (if charging
time is 1 h) and thus the system is practically not feasible.

B. Intelligent Dynamic Load Leveling Model

As the random model is not feasible, the next possible solu-
tion is load leveling. For practical applications, the number of
GVs in an electric power network can be estimated analytically
based on the number of electricity clients (customers) in that
network. An estimate of gridable vehicles from residential elec-
tricity clients may be computed as follows:

Nov = NVyc—vagVrEc NREC
_ NVyc_vecVrECXRLLnin

17)
AVurp
AVyEc
AV} = 18
LD = (30 « 24) (18)
where
Nav number of GVs;
NVyc—_vea % of the number of registered GVs for
participation in smart operations;
VerEC average number of gridable vehicles per
residential electricity client;
NgrEec number of residential electricity clients;
XrL percentage of residential loads in the power
network;
Lin minimum load in the power network at
given time (MW);
AVyLp average hourly load demand per residential
electricity client (kW);
AVyec average monthly electricity consumption

per residential electricity client (kWh).

For example: the minimum load, L,;,, in the 10-unit bench-
mark system considered in this research is 700 MW [25]. It
can be taken that the average monthly electricity consumption,

AV ec, of adomestic home is about 1500 kWh [26]. Thus, av-
erage hourly electricity load of a residential client, AVyp, is
2.0833 kW. If we assume that X gr, = 30%, the total number of
clients in the region Nrgc, is 100 801.6 and it can be rounded
to 100 000 for simplicity. It is reasonable to assume that in the
future, VR pc = 1,1.e., on average there will be one gridable ve-
hicle per residential electricity client, and NVyc_vog = 50%,
i.e., 50% register to participate in the process. Thus, Ngy from
(17) is about 50 000 and this is a reasonable number of vehicles
to be considered on the 10-unit benchmark system for our sim-
ulation studies.

Excess energy for the GVs of the system can be estimated as

follows:
Lgv )
Egv = —7— Vae (19)
GV ( Moy ) V26

where

FEgv excess electric energy for GVs per day;

Lav average length of travel (in mile) per day;

Mgy  mileage of a GV per kWh;

Ny5E&  number of GVs.

Average length of travel, Lgy is (12,000 mi/365 =)
32.88 mi/day, as an average distance driven with a ve-
hicle is about 12,000 mi/year [26]. Typical mileage of
a GV, Mgy is 4 mi/kWh. Therefore, a GV needs about
(32.88/4 =) 8.22 kWh/day. From (19), excess energy Fgy is
(50,000 * 8.22 kWh =) 411 MWh in a small system of 50 000
GVs each day.

If the GVs are not regulated, in the worst case peak load will
be increased by 411/6 MW which is very costly for the system
if charging time, ¢ is short. However, intelligent scheduling of
GVs can soften the problem by leveling the excess load de-
mand intelligently. Load curve of the standard 10-unit system
has both peaks and valleys (see Fig. 2). According to the load
curve, demand is relatively low during hours from Ist to 9th
and from 14th to 24th (total 20 h). GVs can be charged from the
grid during the off-peak load to level the demand. In the pro-
posed method, extra 411 MWh load for 50 000 vehicles is intel-
ligently distributed in the dynamic optimization model among
off-peak hours without increasing the peak load so that cost and
emissions are minimized (see dashed-dotted line of Fig. 2). The
proposed intelligent dynamic load leveling is better than typical
static load leveling where excess load is equally distributed to
off-peak hours, because it may not be the optimum load leveling
for cost and emission reductions.

In transportation, it is already mentioned that the average dis-
tance driven with a vehicle is about 12 000 mi per year and av-
erage emission from a light weight vehicle is 1.2 1b/mi. So, emis-
sion from a vehicle over a year is (12,000 x 1.2 =) 14400 lbs
using (1) and total emission from 50 000 mechanical vehicles is
720000 000 Ibs (326 678.76 tons) in transportation sector.

A nonlinear model is applied for emission from power plants
(2). First, emission is calculated for the 10-unit system with
standard input data of power plants, emission co-efficients and
load demand without considering GVs. PSO is used to calcu-
late the schedule, power dispatch and corresponding emission.



290

IEEE SYSTEMS JOURNAL, VOL. 4, NO. 3, SEPTEMBER 2010

TABLE III
EMISSIONS, COST AND DISPATCH OF 10-UNIT SYSTEM (WITHOUT GVS AND RENEWABLE SOURCES)

Time U-1 U-2 U-3 U-4 U-5 U-6 U-7 U-8 U-9 U-10 Emission Demand
(H) MW)  (MW) MW)  MW)  MW) MW) MW) MW) MW) (MW) (ton) MW)

1 455.0 244.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 682.699 700.0

2 455.0 295.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 754.716 750.0

3 455.0 265.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 772.805 850.0

4 455.0 364.9 130.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 944.857 950.0
5 455.0 285.0 130.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 865.388 1000.0
6 455.0 385.0 130.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 1049.963 1100.0
7 455.0 410.0 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 1130.456 1150.0
8 455.0 455.0 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 1241.004 1200.0
9 455.0 455.0 130.0 130.0 104.9 0.0 25.0 0.0 0.0 0.0 1272.402 1300.0
10 455.0 455.0 130.0 130.0 162.0 0.0 25.0 10.0 0.0 0.0 1332.607 1400.0
11 455.0 455.0 130.0 130.0 162.0 0.0 25.0 55.0 0.0 10.0 1361.131 1450.0
12 455.0 455.0 130.0 130.0 162.0 0.0 47.9 55.0 55.0 10.0 1387.289 1500.0
13 455.0 455.0 130.0 130.0 162.0 0.0 25.0 10.0 0.0 0.0 1332.607 1400.0
14 455.0 455.0 130.0 130.0 104.9 0.0 25.0 0.0 0.0 0.0 1272.402 1300.0
15 455.0 455.0 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 1241.004 1200.0
16 455.0 309.9 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 930.244 1050.0
17 455.0 260.0 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 853.614 1000.00
18 455.0 360.0 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 1022.576 1100.00
19 455.0 455.0 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 1241.004 1200.00
20 455.0 455.0 130.0 130.0 162.0 0.0 0.0 10.0 10.0 10.0 1370.453 1400.00
21 455.0 455.0 130.0 130.0 119.9 0.0 0.0 0.0 10.0 0.0 1283.647 1300.00
22 455.0 385.0 130.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 1049.963 1100.00
23 455.0 315.0 0.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 851.033 900.00
24 455.0 345.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 842.310 800.00

Total emission = 26,086.172 tons
Total running cost = $557,744.29 (fuel cost plus start-up cost)
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s | |
g 1200
el
g 1000+ ]
3 —— Load
800~ ¢/  |i== Intelligent load level i
600 : BT: .
o 5 10 15 20 %
Hour

Fig. 2. Intelligent load leveling for GVs using optimization to reduce both cost
and emission.

Results are shown in Table III. Then emission is calculated con-
sidering load demand including 50000 GVs and leveling the
extra load intelligently in the optimization model (Fig. 2). These
results are shown in Table IV. From Tables III and IV, excess
emission is 491.311 tons (26, 577.483 tons — 26, 086.172 tons)
from power plants to supply energy to the 50000 GVs during
24 h. So excess emission is (491.311 %365 =) 179 328.515 tons
per year (on the other hand 326 678.766 tons from transporta-
tion sector). However, system efficiency and network losses are
not considered in the model. So considering overall system ef-
ficiency and losses, emission will not be significantly reduced
using intelligent load leveling only, as emission will be shifted
from transportation sector to power system. Modern technolo-
gies for mileage-efficient GVs and modern emission absorption
techniques for power plants can reduce emission in this model.
Usually the overall efficiency of GVs (23.1%) is higher than
that of conventional vehicles (12.6%) considering fuel energy
that drives the wheels. On the other hand, emissions may be in-
creased for system efficiencies and network losses of power sys-
tems. The same as emission, operation cost will not be signif-
icantly decreased in the load leveling model, as operation cost
will be shifted from the transportation sector to power sector.

However, transportation fuel price is more volatile and the pro-
posed model reduces dependency on it, which is very important
in the present world.

For the load leveling model, scheduling and control of GVs
are very important, as today’s vehicle owners with increase
in fuel cost and emission taxations over time will start having
more of electric and hybrid vehicles. It will be possible to
control V2G/G2V nicely based on policies, incentives and
rebates put in place by the government, utilities and gridable
manufacturers. Utility may provide incentives/rebates on ve-
hicle batteries in return for V2G participation. Under such
conditions, vehicle use culture/habit will most likely change
and GV owners will allow their vehicles to charge/discharge
in recommended hours by the utilities. GVs embedded with
advanced features for V2G/G2V operations will be attractive
and the easiness will be additional factor for the culture change.
Examples of these advanced features include the use as an au-
tomatic intelligent agent to: 1) make charging decisions based
on real-time pricing and 2) communicate with a utility agent on
the GV’s availability for V2G operations and state of battery
charge needed at the departure time. It has been mentioned
earlier that each day a vehicle covers an average estimated
distance of 32.88 mi and thus takes roughly less than one hour
of travel time. Therefore, it can be said that a vehicle is parked
most of the time of a day, either in a parking lot or in a home
garage. Vehicles can be charged/discharged during the time of
a day when they are parked using automatic intelligent agents.
The authors have described the practicality and controllability
of GVs in [17].

C. Smart Grid Model

It is necessary to integrate RESs (wind and solar) in the sus-
tainable CPES to reduce cost and emission. For a small city with
50000 GVs, at least (50,000 15 kWh =) 750-MWh new wind
and solar energy is needed to get the full benefit of GVs for
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TABLE IV

EMISSIONS, COST AND DISPATCH OF 10-UNIT SYSTEM WITH 50 000 GV'S IN INTELLIGENT LOAD LEVELING MODEL

Time U-1 u-2 U-3 U-4 U-5 U-6 u-7 U-8 U9 U-10 Emission | Capacity — Demand” Reserve
H) | (MW)  (MW)  (MW)  (MW)  (MW)  (MW)  (MW) (MW) (MW) (MW) (ton) (MW) (MW) (MW)
1 455.0 260.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 703.193 910.00 715.39 194.61
2 455.0 326.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 808.302 910.00 781.63 128.37
3 455.0 404.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 966.066 910.00 859.15 50.85
4 455.0 2532 130.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 819.824 1170.00 968.26 201.74
5 455.0 291.7 130.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 875.887 1170.00 1006.78 163.22
6 455.0 394.1 130.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 1069.875 1170.00 1109.11 60.89
7 455.0 4351 130.0 130.0 0.0 0.0 0.0 0.0 10.0 0.0 1197.600 1225.00 1160.10 64.90
8 455.0 455.0 130.0 130.0 375 0.0 0.0 0.0 0.0 0.0 1238.923 1332.00 1210.37 121.63
9 455.0 455.0 130.0 130.0 126.2 20.0 0.0 0.0 0.0 0.0 1280.814 1412.00 1316.30 95.70
10 455.0 455.0 130.0 130.0 162.0 424 25.0 0.0 0.0 0.0 1325.064 1497.01 1400.00 97.01
11 455.0 455.0 130.0 130.0 162.0 80.0 25.0 10.0 0.0 0.0 1356.117 1552.00 1450.00 102.00
12 455.0 455.0 130.0 130.0 162.0 80.0 25.0 521 10.0 0.0 1383.362 1607.00 1500.00 107.00
13 455.0 455.0 130.0 130.0 162.0 424 25.0 0.0 0.0 0.0 1325064 1497.00 1400.00 97.00
14 455.0 455.0 130.0 130.0 136.7 20.0 0.0 0.0 0.0 0.0 1286.296 1412.00 1326.77 85.23
15 455.0 455.0 130.0 130.0 61.1 0.0 0.0 0.0 0.0 0.0 1237.929 1332.00 1231.13 100.87
16 455.0 3211 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 949.456 1332.00 1061.14 270.86
17 455.0 2885 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 895.445 1332.00 1028.53 303.47
18 4550 388.1 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 1081.451 1332.00 1128.18 203.82
19 455.0 455.0 130.0 130.0 61.6 0.0 0.0 0.0 0.0 0.0 1237.951 1332.00 1231.66 100.34
20 455.0 455.0 130.0 130.0 162.0 0.0 0.0 55.0 247 10.0 1363.050 1497.00 1430.11 66.89
21 455.0 4550 130.0 130.0 149.3 0.0 0.0 10.0 0.0 0.0 1297.726 1387.00 1329.41 57.59
22 455.0 410.6 130.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 1107.338 1170.00 1125.67 44.33
23 455.0 337.2 130.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 890.830 1040.00 92222 117.78
24 455.0 364.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 879.920 909.99 819.10 90.89

Total emission = 26,577.483 (ons
Total running cost = $566,898.20 (fuel cost plus start-up cost)
Notes: *Load is intelligently leveled and demand includes the load for GVs.
reducing cost and emission. If the energy ratio from wind and TABLE V

solar is taken as 2:1, 500 MWh and 250 MWh of wind and solar
energy respectively are available. This assumption is based on
there being sufficient wind speed and solar insolation profiles
for the location studied. For a given location, a realistic wind
farm and solar farm size can be estimated using an optimization
algorithm based on wind speed and solar insolation data over a
period of time. In this study, solar insolation data is collected
from NREL’s Solar Radiation Research Laboratory (SRRL) in
Golden, CO [27] for the solar farm model. Wind speed data is
collected from the National Wind Technology Center (NWTC)
in Boulder, CO [28] for the wind farm model. The wind farm
and solar farm sizes are estimated to be 25.5 and 40 MW (16%
photovoltaic panel efficiency), respectively, and a typical day
in the month of January forecasts of wind and solar energy are
given in Table V.

In the smart grid model, GVs can be used as loads, S3Ps and
storages. GVs can be utilized for harnessing renewable energy,
storage, transportation, and providing power for both residen-
tial and commercial customers. The amount of cost and emis-
sion reductions mainly depends on maximum utilization of re-
newable energy through GVs, where GVs can discharge as well
as charge. GVs are charged/discharged intelligently so that both
cost and emission are minimum; however, load demand and con-
straints are fulfilled. Standard 10-unit system with 50000 GVs
is studied for minimizing cost and emission, and PSO is used
for optimization. Results are shown in Table VI.

In Table VI, emission is 24 852.583 tons and cost is
$553776.56 when 50,000 GVs and RESs are considered in the
10-unit system during 24 h in the smart grid. On the other hand,
emission is 26 086.172 tons when GVs and RESs are not consid-
ered in the same system (Table III). Thus, smart grid with RESs
and GVs reduces (26,086.172 tons — 24,852.583 tons =)
1233.589 tons of emission per day or 450259.985 tons per
year from power sector of 10-unit small system. Besides 50,000
GVs will replace 50 000 conventional vehicles and it is already
calculated that emission is 326 678.766 tons from the 50,000
vehicles. So smart grid will reduce total 776938.751 tons

FORECASTS OF WIND AND SOLAR ENERGY (A TYPICAL
DAY IN THE MONTH OF JANUARY)

Hour | Wind (MW) | Solar (MW)
1 10.54 0
2 2227 0
3 25.5 0
4 25.5 0
5 25.5 0
6 25.5 0
7 25.5 0.09
8 25.5 17.46
9 25.5 31.45
10 25.5 36.01
11 25.5 38.06
12 25.5 35.93
13 25.5 36.78
14 24.82 31.59
15 20.74 9.7
16 14.62 12.92
17 25.5 0
18 19.04 0
19 25.5 0
20 18.02 0
21 25.5 0
22 2142 0
23 0 0
24 2.55 0

Solar farm size = 40 MW
Wind farm size = 25.5 MW

(450259.985 + 326 678.766) emission from power systems and
transportation sector.

Fuel cost is highly volatile. The benchmark fuel cost co-effi-
cients that are used in this simulation, are old. Thus, present cost
co-efficients are much higher as current fuel cost is scaled up a
lot since last decade. According to the results, smart grid with
RESs and GVs saves at least ($557, 744.29 — $553, 776.56 =)
$3967.73 per day in the 10-unit small system. It will also save
running cost from the transportation sector. It is assumed that
mileage of a light weight vehicle is 20 mi/gallon and present
gasoline price is $2.6/gallon. So, transportation fuel cost will be
reduced by (50, 000 * (32.88 mile/20 mile) * $2.6 =) $213 720
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TABLE VI
SMART DISPATCH OF CONVENTIONAL UNITS, RESS AND GVS AS LOADS AS WELL AS SOURCES IN SMART GRID MODEL
Time U-1 U-2 U-3 U-4 U-5 U-6 u-7 U-8 U9 U-10 V2G/G2V SolarT Wind Emission Capacity Demand? Reserve
(H) MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (ton) (MW) (MW) (MW)
1 455.0 1542 0.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 =50.01 0.00 10.73 655.056 1090.0 700.0 390.0
2 4550 156.8 0.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 -1432 0.00 2245 656.939 10543 750.0 3043
3 4550 150.0 114.1 130.0 0.0 0.0 0.0 0.0 0.0 0.0 -24.09 0.00 2505 701.944 1194.1 850.0 3441
4 455.0 2329 130.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 -23.07 0.00 25.10 794.016 1193.1 950.0 2431
5 455.0 2557 130.0 130.0 250 0.0 0.0 0.0 0.0 0.0 -21.14 0.00 2535 847.858 1353.1 1000.0 353.1
6 455.0 3527 130.0 130.0 250 0.0 0.0 0.0 0.0 0.0 -18.28 0.00 25.50 1008.261 1350.3 1100.0 2503
7 4550 398.0 130.0 130.0 250 0.0 0.0 0.0 0.0 0.0 -13.59 0.00 25.50 1103328 1345.6 1150.0 195.6
8 4550 388.8 130.0 130.0 250 0.0 0.0 0.0 0.0 0.0 2848 17.14 25.50 1082.973 1360.5 1200.0 160.5
9 455.0 431.9 130.0 130.0 250 20.0 250 0.0 0.0 0.0 2648 31.50 25.14 1234.730 1523.5 1300.0 2235
10 4550 4550 130.0 130.0 877 20.0 250 10.0 0.0 0.0 25.63 36.18 2541 1322.868 1577.6 1400.0 177.6
11 4550 455.0 130.0 130.0 1245 200 25.0 10.0 10.0 0.0 27.08 38.31 2501 1367.224 1634.1 1450.0 184.1
12 4550 4550 130.0 130.0 1483 20.0 250 10.0 10.0 10.0 46.41 3539 2488 1412.925 1708.4 1500.0 208.4
13 455.0 4550 130.0 130.0 982 200 250 10.0 0.0 0.0 1478 36.85 2513 1325569 1566.8 1400.0 166.8
14 4550 4292 130.0 130.0 250 200 250 0.0 0.0 0.0 28.93 31.84 2507 1228.074 15259 1300.0 2259
15 4550 4195 130.0 130.0 250 0.0 0.0 0.0 0.0 0.0 10.34 9.72 2042 1152787 13423 1200.0 1423
16 4550 2985 130.0 130.0 250 0.0 0.0 0.0 0.0 0.0 -16.30 12.87 14.87 911.372 13483 1050.0 2983
17 4550 246.0 130.0 130.0 250 0.0 0.0 0.0 0.0 0.0 -11.09 0.00 2501 835.018 1343.1 1000.0 343.1
18 4550 3594 130.0 130.0 250 0.0 0.0 0.0 0.0 0.0 -18.77 0.00 1929 1021514 1350.8 1100.0 250.8
19 4550 362.1 130.0 130.0 250 20.0 250 0.0 0.0 0.0 2755 0.00 2541 1078.784 15245 1200.0 3245
20 455.0 4550 130.0 130.0 1163 200 25.0 0.0 10.0 0.0 40.33 0.00 18.27 1333.992 15923 1400.0 1923
21 4550 446.8 130.0 130.0 250 20.0 250 0.0 0.0 0.0 4274 0.00 25.50 1271.883 1539.7 1300.0 239.7
22 455.0 359.0 130.0 130.0 250 0.0 0.0 0.0 0.0 0.0 -20.32 0.00 2124 1020.729 13523 1100.0 2523
23 4550 227.6 130.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 -42.64 0.00 0.00 787.681 1212.6 900.0 312.6
24 4550 150.0 110.0 127.9 0.0 0.0 0.0 0.0 0.0 0.0 -45.13 0.00 2.26 697.056 1215.1 800.0 415.1
Total emission = 24,852.583 tons
Total running cost = $553,776.56 (fuel cost plus start-up cost)

Notes: Wind and solar power forecasting error is £4%; Zdemand does not include the load of GVs; positive and negative values of V2G/G2V indicate discharging and charging

respectively.

TABLE VII
SUMMARY OF INPUT DATA AND RESULTS OF 10-UNIT SYSTEM IN CPES

Item

Value

Transportation sector

Average distance covered by a vehicle
Number of registered GVs

Average distance covered by GVs per kWh
Energy needed by a GV per day

Energy needed by 50,000 GVs per day
Typical percentage time a GV is parked
Average emission from a light weight vehicle

Emission from 50,000 vehicles in transportation sector per day (year)

12,000 miles/year

50,000

4.00 miles

8.22 kWh

411 MWh

95%

1.2 1b/mile

895.010 tons (326,678.766 tons)

Intelligent dynamic load leveling model

Extra emission from power plants to supply energy to 50,000 GVs during one

day (year)

Net emission reduction from power system and transportation sector for 50,000

GVs per day (year)

491.311 tons (179,328.515 tons)

403.699 tons (147,350.251 tons)

Smart grid model: Capital cost

Extra energy needed for the smart grid model

Wind energy and solar energy ratio (location dependent)
Capital cost of solar power

Capital cost of wind power

Solar farm size (based on some assumption of average solar insolation)

750 MWh per day
2:1

$5.0/W

$1.0/W

40 MW

Wind farm size (based on some assumption of average wind speed)
Total capital investment for RESs in the smart grid model with 50,000 GVs

25.5 MW
$225.5 million

Smart grid model: Benefits

Emission reduction from power plants for 50,000 GVs and RESs per day (year)
Total emission reduction from power plants and transportation sector for 50,000
GVs and RESs per day (year)

Total operational cost reduction from power system and transportation sectors for

1,233.589 tons (450,259.985 tons)
2128.599 tons (776,938.751 tons)

$217,687.73 ($79,456,021.45)

50,000 GVs and RESs in CPES per day (year)

Note: Per year calculation is shown in the parenthesis.

per day for the 50 000 GVs. Thus, the smart grid model can re-
duce at least (3,967.73 + 213,720 =) $217 687.73 from power
systems and transportation sector every day.

In this model, all the resources, including wind and solar en-
ergy, are intelligently scheduled to minimize both cost and emis-
sion. Optimization model uses forecasted wind and solar power,
and calculates the best wind and solar power dispatch levels. A
forecast error of £4% is considered in this study. As operation
cost of RESs is zero, optimum power level of RESs using PSO
is close to the maximum available power of RESs (see Tables V
and VI). From Tables III, IV and VI, emission is reduced almost
all the scheduling hours for using RESs and GVs in a smart grid
model.

Present capital costs for wind and solar power are about $1/W
and $5/W respectively. So capital investment in power system
is at least ($5%40.00 % 108 + $1 % 25.50 % 106 =) $225.5 million
to get the full advantage of 50000 GVs in CPES. However, it

is expected to reduce per watt capital costs of solar and wind
power in near future when mass amount of solar panels and wind
turbines will be produced. Data and results are summarized as
a tabular form in Table VII.

Number of vehicles connected to the grid or amount of power
transaction to/from the grid is not directly proportional to the
load demand. Smart schedule of vehicles (amount of power
transaction for V2G/G2V) depends on non-linear price curves,
emission curves, load demand, constraints, fitness function, and
balance between cost and emission. An intelligent optimization
method can handle these factors efficiently. Fig. 3 shows an
intelligent V2G/G2V distribution using PSO for the 10-unit
system with 50,000 vehicles in CPES. Most of the vehicles are
connected to the grid at 1st, 12th, 20th, and 24th hours because
demand is either very high or very low at those hours. V2G
takes place from 8th to 15th hours and again 19th to 21st hours
when demand is high. However, G2V happens from 1st to 7th
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Fig. 4. Nondominated solutions for cost and emission optimization of 10-unit
system with RESs and GVs in CPES.

hours, 16th to 18th hours, and 22nd to 24th hours when demand
is low.

Fig. 4 shows the relation between cost and emission of the
10-unit system in CPES. There is a trade-off between cost and
emission in power system. Results are nondominated to each
other, i.e., if cost is low, emission is high, and vice versa. Cost
of power generation and corresponding approximate emission
can be estimated from the graph. Depending on operator’s de-
mand, different weights can be assigned for cost and emission in
fitness function (11). Minimum cost is $552 371.58 where emis-
sion is relatively high. On the other hand, minimum emission is
24 844.076 tons, where cost is relatively high.

Controllability is already discussed in the end of intelligent
load leveling model. The same automatic intelligent agent can
be applicable for the smart grid model to control the charging
and discharging operations.

V. CONCLUSION

A cyber-physical energy system consisting of renewable
energy, gridable vehicles and conventional thermal units is
presented in this paper. Particle swarm optimization has been
applied on dynamic data of physical resources to generate
intelligent scheduling and control of green resources, gridable
vehicles and conventional thermal units for a sustainable CPES.
A sustainable CPES is illustrated by maximum utilization
of RESs using GVs for cost and emission reduction. Three
possible models have been studied and the smart grid model
is a promising approach for sustainable integrated electricity
and transportation infrastructure whereas the random mode is
more or less not practical. Excess load from gridable vehicles is
intelligently distributed to off-peak hours using optimization in
the intelligent dynamic load leveling model; however, cost and
emission reductions are not enough without RESs, as they are
shifted from transportation to power sector. On the other hand,

the smart grid model needs considerable amount of capital
investment for RESs. As the CPES complexity and shear size
evolves, a dynamic method to track the dynamic behavior
of RESs and GVs for sustainability is needed. Furthermore,
real-time price models have to be considered in the scheduling,
control and optimization of gridable vehicles in CPES.
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