
Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Plug-in Vehicles and Renewable Energy Sources for
Cost and Emission Reductions

Ahmed Yousuf Saber,Member, IEEE and Ganesh Kumar Venayagamoorthy,Senior Member, IEEE

Abstract—Electricity and transportation industries are the
main sources of greenhouse gas emissions on earth. Renewable
energy, mainly wind and solar, can reduce emission from the
electricity industry (mainly from power plants). Likewise , next
generation plug-in vehicles which include plug-in hybrid electric
vehicles (PHEVs) and electric vehicles (EVs) with vehicle-to-
grid capability, referred to as “gridable vehicles” (GVs) by the
authors, can reduce emission from the transportation industry.
GVs can be used as loads, energy sources (small portable
power plants) and energy storages in a smart grid integrated
with renewable energy sources (RESs). Smart grid operationto
reduce both cost and emission simultaneously is a very complex
task considering smart charging and discharging of GVs in a
distributed energy source and load environment. If large number
of GVs are connected to the electric grid randomly, peak load
will be very high. The use of traditional thermal power plants
will be economically and environmentally expensive to support
the electrified transportation. The intelligent scheduling and
control of GVs as loads or/and sources have great potential for
evolving a sustainable integrated electricity and transportation
infrastructure. Cost and emission reductions in a smart grid
by maximum utilization of GVs and RESs are presented in
this paper. Possible models, including smart grid model, for GV
applications are given and results are presented. The smartgrid
model offers the best potential for maximum utilization of RESs
to reduce cost and emission from electricity industry.

Index Terms—Cost, constraints, emission, gridable vehicles,
load leveling, optimization, plug-in electric vehicles, renewable
energy, smart grid, solar farm, wind farm.

I. I NTRODUCTION

T HE alarming rate, at which global energy reserves are
depleting, is a major worldwide concern at economic,

environmental, industrial and societal levels [1]. The power
and energy industry represents a major portion of global
emission, which is responsible for 40% of the global CO2
production followed by the transportation industry (24%) [2].
Climate change caused by greenhouse gas (GHG) emissions
is now widely accepted as a real condition that has potentially
serious consequences for human society and industries need
to factor this into strategic plans [3]. The use of renewable
energy may become attractive, especially if customers would
have to pay not only for the cost of generation but also for
transmission, distribution and the indirect cost of environmen-
tal clean-up and health effects [4]. Researchers are working
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toward generating more energy from resources that can be
cost-effective and do not contribute to climate change or have
adverse environmental impacts [5].

Partial solutions to the depletion of energy reserves and
increase in emissions are (a) the integration of distributed
renewable energy sources, and (b) the deployment of next
generation plug-in vehicles on the roads which include plug-in
hybrid electric vehicles (PHEVs) and electric vehicles (EVs)
with vehicle-to-grid (V2G) capability, referred to as “gridable
vehicles” (GVs) by the authors. V2G technology has been
described in [6]. It is an energy storage technology that
has capability to allow bidirectional power flow between a
vehicle’s battery and the electric power grid. It increasesthe
flexibility for electric power grid to better utilize intermittent
renewable energy sources (RESs). With V2G, the state of
charge of a vehicle’s battery can go up or down depending
on the revenues and grid’s demands.

Different forms of energy integration and R&D policy are
discussed in [7]. A technical report from National Renewable
Energy Laboratory (NREL) has reported that there are sig-
nificant reductions in net CO2 emissions from plug-in hybrid
electric vehicles (PHEVs) [8]. The combination of fluctuating
high oil costs, concerns about oil security and availability,
and air quality issues related to vehicle emissions are driving
interests in PHEVs. The economic incentive for owners to
use electricity as fuel is the comparatively low cost of fuel.
Considering cost advantages, a study by the US Electric Power
Research Institute (EPRI) found a significant potential market
for PHEVs [9]. However, use of PHEVs will increase the
load on the electric power grid. If peak load is increased
much, it is essential to install new power plants to supply
the peak load, which may be very costly. Electrification of the
transportation industry will need not only the re-structuring of
present gasoline stations but also the modification of present
electricity infrastructure.

PHEV and EV researchers have mainly concentrated on
interconnection of energy storage of vehicles and grid [10-
21]. Their goals are to educate about the environmental and
economic benefits of PHEVs and EVs, and to enhance the
product market. PHEVs and EVs cannot alone solve the
emission problem completely, as they need electric energy
which is one of the main sources of emission. Therefore,
success of practical application of PHEVs and EVs with V2G
capability to achieve emission and cost reductions greatly
depends on the maximum utilization of RESs.

A dynamic optimization approach is needed to optimize
time-varying resources such as RESs and GVs in a complex
smart grid. Then a successful bridge can be made between the
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electricity and transportation infrastructures.
The primary contributions of this paper are as follows: 1)

Intelligent and flexible operations of gridable vehicles either
as loads, sources or energy storages; 2) Illustration of the
effectiveness of gridable vehicles in a smart grid with RESs;
and 3) The maximum utilization of RESs through the use of
gridable vehicles to reduce cost and emission in a smart grid.

The rest of the paper is organized as follows. The problem
formulation for bridging the electricity and transportation in-
dustries is presented in Section II. For maximum utilization of
resources and minimization of cost and emission, an intelligent
optimization method is described in Section III. Simulation
data and results are presented and discussed in Section IV.
Finally, the conclusion is given in Section V.

II. PROBLEM FORMULATION

In the proposed model: (1) renewable energy sources,
mainly wind and solar, are used to reduce emission from the
electricity industry; (2) GVs are used to reduce emission from
the transportation industry; (3) GVs are smartly used as loads,
energy storages and small portable power plants (S3Ps); (4)
parking lots are used as virtual power plants (VPPs); (5) an on-
board GV computer system communicates with utility to get
real-time electricity pricing and convey vehicle battery’s state
of charge (SoC) and vehicle owner’s preferences. Based on
all the above system capabilities and features, an optimization
method generates an intelligent schedule for proper decision,
control and smart operations that uses GVs to maximize the
usage of RESs in order to reduce both electricity cost and
emissions from the electricity and transportation industries.

The output of a solar photovoltaic (PV) panel given by (1)
depends on the area of PV panelA, solar insolationµ(t) and
the efficiency of the PV panelβ.

Ppv(t) = Aβµ(t) (1)

A wind turbine model is somewhat more complex due
to its mechanical nature. Generally, the power output of a
wind turbine is proportional to the kinetic energy, air density,
etc. contained in the wind as given in (2) whereα is the
Albert Betz constant,ρ(t) is air density,A is area swept by
turbine rotor, andv(t) is wind speed. Other parameters of
wind turbine include cut-in wind speed, cut-out wind speed
and rated wind speed, and typical values are 3.5 m/s, 25 m/s
and 14 m/s respectively. Precise values can be obtained from
manufacturer’s data sheet for the respective units.

Pwind(t) = 0.5αρ(t)Av(t)3 (2)

Wind and solar energy may not meet all the load demand
and thus requiring conventional units to supply the unmet
demand. Wind and solar energy is emission free. However in
electricity and transportation industries, the amount of carbon
dioxide released is proportional to the amount of carbon in the
fuel and the quantity of fuel burnt. Thus, a generation plantor
vehicle that burns a carbon-intensive fuel, will generate more
carbon dioxide at increased levels of operation [22]. Other
types of emissions (SO2, NOx, etc.) are also produced from
electric power and transportation industries. For environment

friendly power generation, emission should be measured and
minimized.

For the study in this paper, a linear approximate model
is used to calculate emission from vehicles in transportation
industry as follows:

ECi(Li, ei) = Li × ei (3)

whereEC() is emission function,Li is the length of travel by
vehiclei in mile andei is emission per mile from vehiclei.

However, a non-linear accurate (complex) model is available
for power systems. Typically emission is expressed as a
polynomial function and its order depends on desired accuracy.
In this study, quadratic function is considered for the emission
curve [23] as follows:

ECi(Pi(t)) = αi + βiPi(t) + γiP
2
i (t) (4)

whereαi, βi andγi are emission co-efficients of uniti.
Fuel cost of a thermal unit is typically expressed as a second

order function of generated power of the unit.

FCi(Pi(t)) = ai + biPi(t) + ciP
2
i (t) (5)

whereai, bi andci are positive fuel cost co-efficients of unit
i.

The start-up cost for restarting a decommitted thermal unit,
which is related to the temperature of the boiler, is included
in the model as follows:

SCi(t) =















h-costi, if boiler temperature is higher
than a threshold

c-costi, if boiler temperature is lower
than a threshold

(6)

whereh-costi andc-costi are hot start cost and cold start cost
of unit i respectively, andc-costi≥h-costi.

In a system with GVs operating as loads or S3Ps, power
supplied from distributed generations must satisfy the load
demandD(t) and the system losses, which is defined as

N
∑

i=1

Pi(t) + Ppv(t) +

NV 2G(t)
∑

j=1

ξPvj
(Ψpre − Ψdep) +

Pwind(t) = D(t) + Losses, if GVs are S3Ps (7)

N
∑

i=1

Pi(t) + Ppv(t) + Pwind(t) = D(t) + Losses+

NV 2G(t)
∑

j=1

ξPvj
(Ψdep − Ψpre), if GVs are loads (8)

wherePi(t) is output power of uniti at timet; Ψpre/Ψdep is
present/departure SoC;Pvj

is power of vehiclej; ξ is system
efficiency;NV 2G(t) is number of GVs connected to the grid
at hourt; andN is number of units.

Only ‘registered’ GVs are considered for smart operations.
‘Registered’ GVs are vehicles whose owners have opted for
their vehicles’ batteries to participate in V2G transactions. All
registered vehiclesNmax

V 2G take part in smart operations during
a predefined scheduling periodH .

H
∑

t=1

NV 2G(t) = Nmax
V 2G . (9)

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on June 12,2010 at 18:25:38 UTC from IEEE Xplore.  Restrictions apply. 



Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

To maintain system reliability, adequate spinning reserves
are required.

N
∑

i=1

Pmax
i (t) + Ppv(t) +

NV 2G(t)
∑

j=1

ξPvj
(Ψpre − Ψmin) +

Pwind(t) ≥ D(t) + Losses+R(t), if GVs are S3Ps (10)

N
∑

i=1

Pmax
i (t) + Ppv(t) + Pwind(t) ≥ D(t) + Losses+

R(t) +

NV 2G(t)
∑

j=1

ξPvj
(Ψdep − Ψpre), if GVs are loads (11)

wherePmax
i (t) andR(t) are maximum output limit ofith

unit at time t considering ramp rate and spinning reserve of
the system at timet respectively.

Each unit has generation range, which is represented as

Pmin
i ≤ Pi(t) ≤ Pmax

i . (12)

Depletion of storage up to a certain minimum level (Ψmin)
and charging up to a maximum level (Ψmax) are ensured by
(13) to prevent loss of battery life.

ΨminPvj
≤ Pvj

(t) ≤ ΨmaxPvj
. (13)

In the proposed model, emissions (4) and generation costs
(5)-(6) are considered as the objective of smart grid and load
balance (7)-(8), registered vehicles (9), reliability reserve (10)-
(11), generation limit (12), state of charge, system efficiency,
parking lot limitation, etc. are constraints.

Therefore, the typical objective (fitness) function for cost-
emission optimization in a smart grid environment would be

min
Ii(t),NV 2G(t)

T C = Wc × (Fuel + Start-up)+ We × Emission

=

N
∑

i=1

H
∑

t=1

[Wc(FCi(Pi(t)) + SCi(1 − Ii(t− 1))) +

We(ψiECi(Pi(t)))]Ii(t) (14)

subject to (7-13) constraints.

Ii(t) andNV 2G(t) are decision variables for on/off state of
units and number of GVs connected to the grid at timet
respectively.ψi is the emission penalty factor of uniti. Weight
factors Wc and We are used to increase flexibility of the
system.

III. C OST AND EMISSION OPTIMIZATION

An optimization method is required to intelligently handle
large number of GVs in a smart grid for maximum utilization
of RESs in order to reduce both cost and emission to an
optimum level. Particle swarm optimization (PSO) is used to
minimize cost and emission in this study. PSO is a bio-inspired
algorithm based on the behavior of flock of birds and school of
fish, and has similarities to other population based evolutionary
algorithms [24]. Each potential solution, called a particle, flies
in a multi-dimensional search space with a velocity, which is
dynamically adjusted according to the flying experience of its
own and other particles. Binary and integer PSOs are used in

order to reduce the search space dimension in this optimization
problem. Generating units and GVs are represented by binary
and integer numbers respectively. Binary PSO is used to
determine the optimal on/off states of conventional generating
units. Integer PSO is used to determine the optimal number
of GVs in the constrained system. This approach provides a
balance between local and global search abilities, and findsan
optimal solution for cost and emission reductions.

PSO is an iterative method where the velocity and position
of each particle is calculated as follows:

vij(k + 1) = [vij(k) + c1 rand1 (pbestij(k) − xij(k)) +

c2 rand2 (gbestj(k) − xij(k))][1 +
−Range

MaxIte
(Ite− 1)]. (15)

Binary PSO for generating units:

Iij(k + 1) = xij(k + 1) =

{

1, if U(1) < 1
1+exp(−vij (k+1))

0, otherwise.
(16)

Integer PSO for GVs:

NV 2Gj(k + 1) = xij(k + 1) = round(xij(k) + vij(k + 1)). (17)

HereIij andxij are matrices of sizes (H×N ) and (H×N +
1), respectively. However,NV 2Gj is a column vector of (H×1)
integers that reduces dimension and it is assigned to the last
column of matrixxij . Particle’s best positionpbest, global best
positiongbest, velocity v, positionx, accelerating parameters
c1 andc2, particle numberi, problem dimensionj and iteration
index k are standard terms of PSO [24].Ite, MaxIte and
U(1) are current iteration, maximum number of iterations,
and a uniform number between 0 and 1, respectively. In the
above velocity equation (15), first term indicates the current
velocity of the particle (inertia term); second term presents the
cognitive term of the particle where the particle changes its
velocity based on its own private thinking and memory; and
the third term is the social part where the particle changes its
velocity based on knowledge derived from the interaction with
other particles in the swarm.

Flowchart for minimization of cost and emission using GVs
and RESs in a smart grid is given in Fig. 1. At hourt, if sched-
ule is [I1(t), I2(t), . . . , IN (t), NV 2G(t), Ppv(t), Pwind(t)]T

Apply binary PSO for conventional units and integer PSO for GVs.  
Repair solutions to satisfy constraints of GVs, loads, RESs, etc.

Initialize PSO, GVs, RESs and 
smart grid parameters.   

No

Yes

Calculate dispatch, cost, emission and finally
 weighted fitness. Update particles accordingly.  

Print result (best particle).

 Maximum
iterations?

End

Start

Fig. 1. Flowchart for minimization of cost and emission using GVs and RESs

in a smart grid.
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then power to/from vehicles isξNV 2G(t)Pvi
(Ψpre − Ψdep);

sign of NV 2G(t) indicates load/source; and the remaining
demand [D(t) + ξNV 2G(t)Pvi

(Ψpre − Ψdep) − Ppv(t) −

Pwind(t)] is met from conventional running units of the
schedule[I1(t), I2(t), . . . , IN (t)]T with dispatch computed
using Lambda iteration.

IV. RESULTS AND DISCUSSIONS

A simulation study of an independent system operator (ISO)
of 10-unit system with 50,000 registered GVs is carried out
in this study. Load demand and unit characteristics of the
10-unit system are collected from [25]. Estimated emission
coefficients and plant (generators) data are given in TablesI
and II respectively. Two models are investigated to show the
effect of GVs in the electricity and transportation industries.

• Case 1 (load leveling model): GVs are charged from
conventional generation using load leveling optimization.

• Case 2 (smart grid model): GVs are charged from RESs
as loads and discharged to the grid as sources.

Parameter values used in this study are:
average vehicle battery capacity,Ev = 15 kWh; total num-
ber of vehicles of a city = 50,000 (estimated); charging-
discharging frequency = 1 per day; scheduling period = 24
hours; departure SoC,Ψdep = 50%; system efficiency,ξ =
85%; for PSO, swarm size = 30, iterations = 1000 and
accelerating parametersc1 = 1.5, c2 = 2.5,Range = 0.4.

For practical applications, the number of GVs in an electric
power network can be estimated analytically based on the
number of electricity clients (customers) in that network.An
estimate of GVs from residential electricity clients may be
computed as follows:

NGV = QV 2GVRECNREC

= QV 2GVRECXRLDmin/AVHLD (18)

AVHLD = AVMEC/(30 × 24) (19)

TABLE I
GENERATOREMISSION CO-EFFICIENTS

Unit αi βi γi

(ton/h) (ton/MWh) (ton/MW2h)
U-1 10.33908 -0.24444 0.00312
U-2 10.33908 -0.24444 0.00312
U-3 30.03910 -0.40695 0.00509
U-4 30.03910 -0.40695 0.00509
U-5 32.00006 -0.38132 0.00344
U-6 32.00006 -0.38132 0.00344
U-7 33.00056 -0.39023 0.00465
U-8 33.00056 -0.39023 0.00465
U-9 35.00056 -0.39524 0.00465
U-10 36.00012 -0.39864 0.00470

TABLE II
PLANT SIZE AND MAXIMUM CAPACITY (1,662 MW)OF 10-UNIT

SYSTEM

U-1 U-2 U-3 U-4 U-5
P max

i
(MW) 455 455 130 130 162

P min
i

(MW) 150 150 20 20 25

U-6 U-7 U-8 U-9 U-10
P max

i
(MW) 80 85 55 55 55

P min
i

(MW) 20 25 10 10 10

For example: the minimum load,Dmin, in the 10-unit
benchmark system considered in this research is 700 MW
[25]. It can be taken that the average monthly electricity
consumption,AVMEC , of a domestic home is about 1,500
kWh [26]. Thus average hourly electricity load of a residential
client,AVHLD , is 2.0833 kW. If we assume that percentage of
residential loads in the power network,XRL=30%, the total
number of clients in the regionNREC , is 100,801.6 and it can
be rounded to 100,000 for simplicity. It is reasonable to assume
that in the future,VREC=1, i.e., on average there will be one
GV per residential electricity client, andQGV =50%, i.e. 50%
register to participate in the process. Thus,NGV from (18)
is about 50,000 and this is a reasonable number of vehicles
to be considered on the 10-unit benchmark system for our
simulation studies.

If 50,000 GVs are connected to the grid randomly, in the
worst case an excess of (50,000×15kWh=) 750 MWh energy
will be needed for the small system of a city (or at least 375
MWh if 50% departure SoC is considered). No optimization
is carried out since the charging-discharging process is totally
random (random model). In such a system, peak load will
be approximately 50% more in the worst case, thus, such a
system is practically not feasible.

Case 1 (load leveling model):As the random system is
not feasible, the next possible solution is load leveling. It is
estimated that average distance driven with a vehicle is about
12,000 miles per year [26], thus a vehicle covers an average
distance of 32.88 miles/day. It is assumed that an EV can run
4 miles/kWh. Therefore an EV needs about 8.22 kWh/day.
Study on load forecasting including GVs is not done yet. So an
approximate linear model is shown here. Extra energy needed
for only 50,000 vehicles is (50,000×8.22 kWh =) 411 MWh
in a small system each day. If GVs are charged randomly from
the existing power system, in the worst case (if all vehicles
are charged at peak hour only) peak load will be increased
by 411 MW which is too high for a small system where
50,000 GVs belong to residential customers of the system.
It is logical that a system may not have sufficient capacity
to meet this extra peak load. Besides load increases by about
10% each year. In this case, it is necessary to install new units
to meet the new load from GVs, which is costly and time
consuming. However, an intelligent scheduling of GVs can
soften the problem by leveling the load demand intelligently.
GVs can be used and are promising as load leveling devices
in the electricity industry.

Load curve of the standard 10-unit system has both peaks
and valleys (see Fig. 2). According to the load curve, demand
is relatively low during hours from 1st to 9th and from 22nd
to 24th (total 12 hours). GVs can be charged from the grid
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Fig. 2. Load leveling for GVs.
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TABLE III
EMISSIONFROM 10-UNIT SYSTEM (WITHOUT GVS AND RENEWABLE SOURCES)

Time U-1 U-2 U-3 U-4 U-5 U-6 U-7 U-8 U-9 U-10 Emission Demand
(H) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (ton) (MW)
1 455.0 244.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 682.70 700.0
2 455.0 295.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 754.72 750.0
3 455.0 265.0 0.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 772.80 850.0
4 455.0 364.9 0.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 944.86 950.0
5 455.0 285.0 130.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 865.39 1000.0
6 455.0 385.0 130.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 1049.96 1100.0
7 455.0 410.0 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 1130.46 1150.0
8 455.0 455.0 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 1241.00 1200.0
9 455.0 455.0 130.0 130.0 104.9 0.0 25.0 0.0 0.0 0.0 1272.40 1300.0
10 455.0 455.0 130.0 130.0 162.0 0.0 25.0 10.0 0.0 0.0 1332.61 1400.0
11 455.0 455.0 130.0 130.0 162.0 0.0 25.0 55.0 35.1 0.0 1355.50 1450.0
12 455.0 455.0 130.0 130.0 162.0 0.0 47.9 55.0 55.0 10.01387.29 1500.0
13 455.0 455.0 130.0 130.0 162.0 0.0 25.0 10.0 0.0 0.0 1332.61 1400.0
14 455.0 455.0 130.0 130.0 104.9 0.0 25.0 0.0 0.0 0.0 1272.40 1300.0
15 455.0 455.0 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 1241.00 1200.0
16 455.0 309.9 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 930.24 1050.0
17 455.0 260.0 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 853.61 1000.0
18 455.0 359.9 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 1022.56 1100.0
19 455.0 455.0 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 1241.00 1200.0
20 455.0 455.0 130.0 130.0 162.0 0.0 0.0 10.0 10.0 10.0 1370.45 1400.0
21 455.0 455.0 130.0 130.0 119.9 0.0 0.0 10.0 0.0 0.0 1281.70 1300.0
22 455.0 385.0 130.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 1049.96 1100.0
23 455.0 315.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 851.03 900.0
24 455.0 345.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 842.33 800.0

Total emission = 26,078.589 tons
Total running cost = $558,372.08 (fuel cost plus start-up cost)

TABLE IV
EMISSION FROM 10-UNIT SYSTEM WITH 50,000 GVS CONSIDERINGLOAD LEVELING

Time U-1 U-2 U-3 U-4 U-5 U-6 U-7 U-8 U-9 U-10 Emission Demand
(H) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (ton) (MW)
1 455.0 279.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 730.32 734.3
2 455.0 329.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 813.02 784.3
3 455.0 299.2 130.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 824.73 884.3
4 455.0 399.2 130.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1018.17 984.3
5 455.0 319.2 130.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 921.58 1034.3
6 455.0 409.3 130.0 130.0 0.0 0.0 0.0 0.0 0.0 10.0 1136.81 1134.3
7 455.0 444.2 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 1213.37 1184.3
8 455.0 455.0 130.0 130.0 64.2 0.0 0.0 0.0 0.0 0.0 1238.08 1234.3
9 455.0 455.0 130.0 130.0 119.2 20.0 25.0 0.0 0.0 0.0 1303.70 1334.3
10 455.0 455.0 130.0 130.0 162.0 42.4 25.0 0.0 0.0 0.0 1325.06 1400.0
11 455.0 455.0 130.0 130.0 162.0 80.0 25.0 0.0 10.0 0.0 1358.07 1450.0
12 455.0 455.0 130.0 130.0 162.0 80.0 0.0 55.0 10.0 10.01390.00 1500.0
13 455.0 455.0 130.0 130.0 162.0 47.8 0.0 10.0 0.0 10.0 1360.57 1400.0
14 455.0 455.0 130.0 130.0 119.9 0.0 0.0 10.0 0.0 0.0 1281.70 1300.0
15 455.0 455.0 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 1241.00 1200.0
16 455.0 309.9 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 930.24 1050.0
17 455.0 260.0 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 853.61 1000.0
18 455.0 359.9 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 1022.56 1100.0
19 455.0 455.0 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 1241.00 1200.0
20 455.0 455.0 130.0 130.0 162.0 0.0 0.0 10.0 10.0 10.0 1370.45 1400.0
21 455.0 455.0 130.0 130.0 119.9 0.0 0.0 10.0 0.0 0.0 1281.69 1300.0
22 455.0 455.0 130.0 0.0 94.2 0.0 0.0 0.0 0.0 0.0 1179.83 1134.3
23 455.0 349.2 130.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 913.60 934.3
24 455.0 379.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 911.39 834.3

Total emission = 26,860.578 tons
Total running cost = $567,844.98 (fuel cost plus start-up cost)

during the off-peak hours to level the demand. Load resulting
from GVs can be automatically scheduled by intelligent agents
operating on GVs and interacting with other utility agents
based on real-time electricity pricing available to GVs through
smart meters. An additional 411 MWh/day is needed to
supply the 50,000 GVs which can be equally distributed (411
MWh/12= 34.25 MWh at each hour) over the off-peak hours
to level the demand without increasing the peak load (see Fig.
2).

Based on an average distance of about 12,000 miles driven
with a vehicle in a year and an average emission from a
vehicle of 1.2 lb/mile, the emission from a vehicle is estimated
to be 14,400 lbs (12,000×1.2) using (3). The total emission
from 50,000 mechanical vehicles is therefore 720,000,000 lbs

(326,678.766 tons).

First, emission is calculated for the 10-unit system with
standard input data of power plants, emission co-efficientsand
load demand without considering GVs and RESs. PSO is used
to calculate the schedule, load dispatch, and corresponding
cost and emission. Results are shown in Table III. Then cost
and emission are calculated considering load demand from
50,000 GVs and leveling the extra load. These results are
shown in Table IV. From Tables III and IV, excess emission
is 781.989 tons (26,860.578 tons - 26,078.589 tons) from
power plants to supply energy to the 50,000 GVs during
24 hours. So excess emission is 285,425.985 tons (781.989
tons × 365) per year (on the other hand 326,678.766 tons
from transportation sector). However, lower system efficiency
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TABLE V
SMART GRID SCHEDULE AND DISPATCH OFGENERATING UNITS, RESS AND GVS AS LOADS AS WELL AS SOURCES

Time U-1 U-2 U-3 U-4 U-5 U-6 U-7 U-8 U-9 U-10 V2G/G2V Solar Wind Emission Cap. Demand∗ Reserve
(H) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (ton) (MW) (MW) (MW)
1 455.0 150.0 107.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -22.96 0.00 10.54 634.02 1063.0 700.0 363.0
2 455.0 161.8 130.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -19.09 0.00 22.27 660.66 1059.1 750.0 309.1
3 455.0 255.1 130.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -15.66 0.00 25.50 759.21 1055.7 850.0 205.7
4 455.0 231.6 130.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 -22.16 0.00 25.50 792.42 1192.2 950.0 242.2
5 455.0 259.6 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 -25.15 0.00 25.50 853.11 1357.1 1000.0 357.1
6 455.0 352.0 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 -17.52 0.00 25.50 1006.84 1349.5 1100.0 249.5
7 455.0 398.4 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 -14.08 0.09 25.50 1104.13 1346.1 1150.0 196.1
8 455.0 388.7 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 28.32 17.46 25.50 1082.68 1360.3 1200.0 160.3
9 455.0 427.0 130.0 130.0 25.0 20.0 25.0 0.0 0.0 0.0 31.07 31.45 25.50 1222.69 1528.1 1300.0 228.1
10 455.0 455.0 130.0 130.0 89.6 20.0 25.0 0.0 0.0 10.0 23.77 36.01 25.50 1326.22 1575.8 1400.0 175.8
11 455.0 455.0 130.0 130.0 130.8 20.0 25.0 10.0 10.0 0.0 20.56 38.06 25.50 1370.34 1627.6 1450.0 177.6
12 455.0 455.0 130.0 130.0 120.4 20.0 25.0 10.0 10.0 10.0 73.10 35.93 25.50 1397.80 1735.1 1500.0 235.1
13 455.0 455.0 130.0 130.0 97.6 20.0 25.0 0.0 0.0 10.0 15.03 36.78 25.50 1328.32 1567.0 1400.0 167.0
14 455.0 441.9 130.0 130.0 25.0 20.0 25.0 0.0 0.0 0.0 16.76 31.59 24.82 1259.44 1513.8 1300.0 213.8
15 455.0 414.4 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 15.08 9.70 20.74 1140.81 1347.1 1200.0 147.1
16 455.0 303.8 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 -21.43 12.92 14.62 920.10 1353.4 1050.0 303.4
17 455.0 271.8 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 -37.33 0.00 25.50 870.35 1369.3 1000.0 369.3
18 455.0 357.2 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 -16.27 0.00 19.04 1017.07 1348.3 1100.0 248.3
19 455.0 370.2 130.0 130.0 25.0 20.0 25.0 0.0 0.0 0.0 19.34 0.00 25.50 1095.30 1516.3 1200.0 316.3
20 455.0 455.0 130.0 130.0 106.2 20.0 25.0 10.0 0.0 0.0 50.73 0.00 18.02 1328.15 1602.7 1400.0 202.7
21 455.0 455.0 130.0 130.0 34.4 20.0 25.0 0.0 0.0 0.0 24.98 0.00 25.50 1291.24 1522.0 1300.0 222.0
22 455.0 354.1 130.0 130.0 25.0 0.0 0.0 0.0 0.0 0.0 -15.59 0.00 21.42 1010.95 1347.6 1100.0 247.6
23 455.0 220.2 130.0 130.0 0.0 0.0 0.0 0.0 0.0 0.0 -35.22 0.00 0.00 779.14 1205.2 900.0 305.2
24 455.0 150.0 118.7 130.0 0.0 0.0 0.0 0.0 0.0 0.0 -56.28 0.00 2.55 705.51 1226.3 800.0 426.3

Solar farm size = 40 MW (250,731.33 m2)
Wind farm size = 25.5 MW (17 wind turbines and 1.5 MW each)

Total running cost = $553,172.03 (fuel cost plus start-up cost)
Total emission = 24,956.688 tons

Notes: Demand∗ does not include the load of GVs; positive and negative values of V2G/G2V indicate discharging and charging, respectively.

and higher network losses will increase the emission from
power plants. So in load leveling model, significant emission
reduction is not guaranteed, as emission will be shifted from
transportation sector to power system. Modern technologies
for mileage-efficient GVs and modern emission absorption
techniques for power plants can reduce emission in this model.
Usually the overall efficiency of GVs (23.1%) is higher than
that of conventional vehicles (12.6%) considering fuel energy
that drives the wheels. The same as emission, net operation
cost will not be significantly decreased in the load leveling
model, as operation cost will be shifted from the transporta-
tion industry to electricity industry. However, transportation
fuel price is more volatile and the proposed model reduces
dependency on it, which is very important in the present world.

Case 2 (smart grid model):A smart grid consists of RESs,
GVs and conventional generating units. In this study, solar
insolation data are collected from NREL’s Solar Radiation
Research Laboratory (SRRL) in Golden, CO [27] for the solar
farm model. Wind speed data are collected from the National
Wind Technology Center (NWTC) in Boulder, CO [28] for the
wind farm model. Figs. 3 and 4 are used to estimate a realistic
wind farm and solar farm size for the analysis presented in this
study. However for a given location, this can be formulated
and solved using an optimization algorithm to find a near-
optimal size based on data of wind speed and solar insolation
over a period of time.

For a small city of 50,000 GVs, at least (50,000×15 kWh
=) 750 MWh wind and solar energy is needed to get the
maximum benefit of the GVs for reducing cost and emission.
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Fig. 3. Average solar insolation in a day taken for the analysis in this study.

If the energy ratio from wind and solar is 2:1, i.e. 500 MWh
comes from wind and 250 MWh from solar. This assumption
is based on there is sufficient wind speed and solar insolation
profiles for the location studied.

From (1) and Fig. 3, areaA of the solar farm is calculated
as follows:

Aβ[µ(t = 1) + µ(t = 2) + . . .+ µ(t = 24)] = 250 MW (20)

where solar insolationµ(t = 1), µ(t = 2), . . ., µ(t = 24) are
extracted from Fig. 3 and standard value of PV panel efficiency
β is 16%. Thus, areaA of the solar farm is 250,731.33 m2

from (20). Considering 1,000 W/m2 maximum solar insolation
and 16% efficiency, the maximum capacity of the solar farm
is ≈40 MW.

On the other hand, for the output of the wind farm, the
power curve for General Electric 1.5 MW turbine model
1.5sle [29] under ideal conditions is approximated and used
to determine the output of the wind farm based on the wind
speed. FirstPwind(t = 1)+Pwind(t = 2)+. . .+Pwind(t = 24)
is calculated for a single 1.5 MW turbine during 24 hours using
the wind speed curve (Fig. 4) and manufacturer data sheet of
power curve [29]. It is 30.06 MWh for a single 1.5 MW turbine
during 24 hours and for the wind speed data. However, this
model needs 500 MWh from wind and thus a wind farm of
(500/30.06=16.63≈) 17-turbine is needed for this model.

Results in a smart grid model with wind, solar and GVs are
shown in Table V, where GVs are operated as loads as well as
sources. Solar energy is available only at day time from 7am to
4pm and wind energy is available most of the time. According
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Fig. 4. Average wind speed in a day taken for the analysis in this study.
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TABLE VI
SUMMARY OF DATA AND RESULTS

Item Value
Average distance covered by a vehicle 12,000 miles/year
Number of registered GVs per city (assumed) 50,000
Average distance covered by GVs per kWh 4.00 miles
Energy needed by a GV per day 8.22 kWh
Energy needed by 50,000 GVs per day 411 MWh
Typical off-peak load duration of a day 12 hours
Extra demand for GVs per off-peak hour 34.25 MWh
Typical percentage time a GV is parked (gridable) 95%
Average emission of a vehicle 1.2 lb/mile
Emission from 50,000 vehicles (transportation industry) over a year 326,678.766 tons

Case 1: Load Leveling Model
Extra emission from power plants for 50,000 GVs during one day 781.989 tons
Extra emission from power plants for 50,000 GVs over a year 285,425.985 tons

Case 2: Smart Grid Model
Emission reduction from power plants for 50,000 GVs and RESsper year 409,493.865 tons
Total emission reduction from power plants and transportation sector for
50,000 GVs and RESs per year

736,172.631 tons

Total operational cost reduction from power system and transportation sectors
for 50,000 GVs and RESs per day

$179,072.95 (at least)

Estimated Capital Cost for RESs
Extra energy needed for the smart grid model 750 MWh per day
Wind energy and solar energy ratio (location dependent) 2:1
Capital cost of wind power 1.0 $/W
Capital cost of solar power 5.0 $/W
Solar farm size (based on some assumption of average solar insolation) 40 MW
Wind farm size (based on some assumption of average wind speed) 25.5 MW
Total capital investment in power system for the smart grid model $225.50 million

to Table V, GVs are charged from the grid at off-peak load
during 1st-7th, 16th-18th and 22nd-24th hours. On the other
hand, GVs are discharged to the grid at peak load during 8th-
15th and 19th-21th hours. So, GVs are operated as loads and
storages mainly at night from 10pm to 7am; they are operated
as sources during working hours from 8am to 3pm; and rest
of the time from 4pm to 9pm, they are operated as loads or
sources depending on the system demand. According to the
results, maximum amount of power (73.10 MW) is discharged
to the grid as V2G at the peak load hour (12th hour). However,
amount of power for V2G and grid-to-vehicle (G2V) is not
linearly proportional to the demand, as cost and emission are
non-linear with respect to power output, and PSO optimizes
both cost and emission under constraints here.

In Table V, emission is 24,956.688 tons and cost is
$553,172.03 when 50,000 GVs are considered in the 10-unit
system during 24 hours in the smart grid. On the other hand,
emission is 26,078.589 tons when GVs are not considered in
the same system (Table III). Thus, GVs reduce (26,078.589
tons - 24,956.688 tons =) 1,121.901 tons emission per day or
409,493.865 tons per year from power plants in the 10-unit
small system with RESs. Besides 50,000 GVs will replace
50,000 conventional vehicles and it is already calculated that
emission is 326,678.766 tons from the 50,000 vehicles. So
50,000 GVs will reduce total 736,172.631 tons (409,493.865
tons + 326,678.766 tons) emission each year from electricity
and transportation industries.

Fuel cost is highly volatile. The benchmark fuel cost co-
efficients that are used in this simulation, are old. Thus present
cost co-efficients are higher, as current fuel cost is scaledup

since the last decade. According to the results, the system can
save at least ($567,844.98 - $553,172.03=) $14,672.95 per day
in the 10-unit small system. It will also save running cost from
the transportation industry. It is assumed that mileage of a
light weight vehicle is 20 miles/gallon and present gasoline
price is $2/gallon. So, transportation cost will be reducedby
(50,000×(32.88 miles / 20 miles)×$2 =) $164,400 per day
for the 50,000 GVs. Thus the smart grid model with RESs
can reduce at least ($14,672.95 + $164,400 =) $179,072.95
from electricity and transportation industries daily. Results are
summarized in Table VI.

Emissions from power plants are shown in Fig. 5 at each
hour. Most of the time emission is low when GVs are
considered in the smart grid model except at peak load (12th
hour) and off-peak load (17th hour). In smart grid model, GVs
are operated as loads to store energy at off-peak hour (17th
hour) and thus total load is higher when GVs are included at
17th hour in the smart grid. On the other hand, at peak load
emission is slightly higher because of higher emission rates of
small plants, constraints, overall cost-emission minimization,
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Fig. 5. Emission with and without GVs.
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stochastic optimization method, etc. However, it is already
described that total emission is reduced more in the smart grid
model compared to the load leveling model and it is shown
by the area between the red and green lines in Fig. 5.

Present capital costs for wind and solar power are about
$1/W and $5/W respectively. So capital investment in
power system for RESs is approximately ($1×25.50×106 +
$5×40.00×106 =) $225.50 million to get the full advantage
of 50,000 GVs in the smart grid. However, it is expected per
watt capital costs of solar and wind power will reduce in near
future when mass amount of solar panels and wind turbines
will be produced.

Number of vehicles connected to grid or amount of power
transaction to/from the grid is not directly proportional to
the load demand. Schedule of vehicles depends on non-linear
price curves, emission curves, load demand, constraints, fitness
function, balance between cost and emission, and so on. An
intelligent optimization method, e.g. PSO can handle these
factors efficiently. Fig. 6 shows an intelligent distribution using
PSO for the system of 10-unit system and 50,000 GVs in the
smart grid where GVs are charged/discharged to/from the grid
to reduce cost and emission. Maximum number of vehicles
(11,466) discharges to the grid at peak load at 12pm. Similarly
maximum number of GVs is charged at off-peak load from
12am to 1am at night.

There is a trade-off between cost and emission optimiza-
tions. Depending on operator’s demand, different weights can
be assigned for cost and emission. Results are non-dominated,
i.e., if cost is low, emission is high, and vice-versa. Table
VII shows some non-dominated solutions in the smart grid.
Minimum cost is $551,977.83 where emission is relatively
high. On the other hand, minimum emission is 24,818.964
tons where cost is relatively high.

Controllability of GVs is important, as today’s vehicle
owners with increase in fuel cost and emission taxations over
time will start having more of electric and hybrid vehicles.
It will be possible to control V2G/G2V nicely based on
policies, incentives and rebates put in place by the govern-
ment, utilities and gridable manufacturers. Utility may pro-
vide incentives/rebates on vehicle batteries in return forV2G
participation. Under such conditions, vehicle use culture/habit
will most likely change and GV owners will allow their
vehicles to charge/discharge in recommended hours by the
utilities. GVs embedded with advanced features for V2G/G2V
operations will be attractive and the easiness will be additional
factor for the culture change. Examples of these advanced
features include the use as an automatic intelligent agent to
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TABLE VII
NON-DOMINATED SOLUTIONS FORCOST AND EMISSION

OPTIMIZATIONS IN THE SMART GRID

Sl. No. Cost ($) Emission (ton)
1 551977.83 25043.225
2 552461.92 25033.487
3 552524.27 25021.793
4 552574.41 24985.209
5 552686.01 24975.958
6 553097.86 24974.187
7 553118.16 24965.303
8 553131.38 24961.131
9 553172.03 24956.688
10 553811.96 24818.964

1) make charging decisions based on real-time pricing and
2) communicate with a utility agent on the GVs availability
for V2G operations and state of battery charge needed at
the departure time. It has been mentioned earlier that each
day a vehicle covers an average estimated distance of 32.88
miles and thus takes roughly less than one hour of travel time.
Therefore, it can be said that on an average basis a vehicle
is on the road less than 5% of a day and it is parked more
than 95% of a day, either in a parking lot or in a home
garage. Vehicles can be charged/discharged during the 95%
time of a day using an automatic intelligent agent when they
are parked. It is difficult to determine whether a particular
vehicle will be parked or on the road at a particular time.
Thus in this model, an individual vehicle is not scheduled.
However, it is possible to schedule a fleet of vehicles that
will be charged/discharged to/from the grid at each hour. Itis
logical that most of the vehicles are parked and depending on
the schedule, committed number of vehicles (not specific ve-
hicles) is charged/discharged using an intelligent autonomous
agent, as enough number of GVs are in parking lots or in
home garages. Instead of considering an individual vehicle,
aggregation of vehicles can solve the control problem of GVs.
It is possible to control at least some percentage of GVs at
a time and this percentage can be used as an upper limit
constraint of the optimization system. Therefore recommended
number of vehicles can charge/discharge to/from the grid. One
vehicle may leave in the middle of the operation and in this
case, it will be substituted by another vehicle in a ‘parking’
status.

V. CONCLUSION

The maximum utilization of renewable energy sources using
gridable vehicles has been presented to illustrate cost and
emission reductions for a sustainable integrated electricity and
transportation infrastructure in this paper. Two possiblemodels
for GV applications have been studied and the smart grid
model is a promising approach for GVs whereas the random
mode is more or less not practical. The load leveling model
does not guarantee significant cost and emission reductions.
On the other hand, the smart grid model needs considerable
amount of capital investment for RESs. This capital cost will
vary depending on the location’s solar insolation and wind
speed profiles. Particle swarm optimization method has been
used to generate the successful schedule and control of GVs
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in a smart grid. As the system complexity and shear size
evolves, an advanced optimization method to track the dy-
namic behavior of RESs and GVs in a smart grid environment
is needed. Furthermore, real-time pricing, and purchase and
sale rates have to be considered in the scheduling, control and
optimization of GVs in a smart grid.
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