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a b s t r a c t

Training a single simultaneous recurrent neural network (SRN) to learn all outputs of a multiple-
input–multiple-output (MIMO) system is a difficult problem. A new training algorithm developed from
combined concepts of swarm intelligence and quantum principles is presented. The training algorithm
is called particle swarm optimization with quantum infusion (PSO-QI). To improve the effectiveness of
learning, a two-step learning approach is introduced in the training. The objective of the learning in the
first step is to find the optimal set of weights in the SRN considering all output errors. In the second
step, the objective is to maximize the learning of each output dynamics by fine tuning the respective
SRN output weights. To demonstrate the effectiveness of the PSO-QI training algorithm and the two-step
learning approach, two examples of an SRN learning MIMO systems are presented. The first example is
learning a benchmark MIMO system and the second one is the design of a wide area monitoring system
for a multimachine power system. From the results, it is observed that SRNs can effectively learn MIMO
systems when trained using the PSO-QI algorithm and the two-step learning approach.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Simultaneous recurrent neural networks (SRNs) are a class of
neural network architectures where the recurrence is instanta-
neous (Geib & Serpen, 2004). SRNs are appropriate for approximat-
ing complex nonlinear systems with fewer neurons because they
model the response of a dynamic nonlinear system evenwith fixed
weights. Furthermore, SRNs have the capability of approximating
non-smooth functions which cannot be approximated by conven-
tional Multilayer Perceptrons (MLPs). An Elman SRN has its feed-
back from the hidden layer output to the context layer inputs, and
in this study it is represented in vector notation as:

H(k, n) = f (A ∗ I(k)+ B ∗ H(k, n− 1)+ K) (1)

O(k) = g(C ∗ H(k, R)+ K ′) n = 1, 2, . . . , R (2)

where I is the set of inputs, H is the set of neuron outputs from the
hidden layer and O is the set of outputs from the output layer. A is
the set of weights from the input layer to the hidden layer, B is the
set of weights from the context layer to the hidden layer, C is the
set of weights from the hidden layer to the output layer, n is the
index of internal recurrence, k is the index of the input sample, R
is the number of internal recurrences, K and K ′ are the biases, and
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f and g are neuron activation functions in the hidden and output
layers respectively.
Another important feature of recurrent neural networks is their

ability to implement associative memory (Michel & Farrell, 1990).
Various types of neural networks have been studied for associative
memory (Kwan, 2002). Unlike other associative memories that
store patterns, this work demonstrates SRNs store dynamicswhich
can be stimulated by excitations of similar dynamics. The feedback
connectivities between the hidden/output and input layers in SRNs
store information that potentially acts as associative memories.
Although SRNs are powerful neural networks, the training pro-

cess is intensive andmoredifficultwhen there aremultiple outputs
to learn, i.e. learning of multiple-input–multiple-output (MIMO)
system. Traditional training algorithms such as backpropagation
through time suffer from local minima and hence it is hard to train
SRNs using these techniques because of the recursive calculations
involved (Cai, Prokhorov, & Wunsch, 2007). Computational intelli-
gence (CI) based algorithms have gained popularity in the training
of neural networks because of their ability to find a global solu-
tion in a multi-dimensional search space. Swarm and evolutionary
based algorithms such as Particle Swarm Optimization (PSO) (Del
Valle, Venayagamoorthy,Mohagheghi, Hernandez, & Harley, 2008)
have shown promises in the training of SRNs. In this study, the
quantumprinciple obtained fromQuantumPSO (QPSO) (Sun, Feng,
& Xu, 2004) has been combined with standard PSO to form a new
hybrid algorithm called PSO with Quantum Infusion (PSO-QI). For
training, a two step learning approach is introduced to improve the
ability of SRNs to learn multiple outputs.
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2. PSO-QI algorithm and two-step learning

2.1. Particle swarm optimization with quantum infusion

PSO-QI is a hybrid algorithm that uses the quantum principle
from QPSO to create a new offspring in PSO. After the positions
and velocities of the particles are updated using standard PSO
equations, a randomly chosen particle from PSO’s pbest (the
previous particle position giving the best fitness value) population
is utilized to carry out the quantum operation; and thus, create an
offspring by mutating the gbest (the best particle among all the
particles in the swarm). The fitness of the offspring is evaluated
and the offspring replaces the gbest only if it has a better fitness.
This ensures that the fitness of the gbest is equal to or better than
its fitness in the previous iteration. Thus, it is improved and pulled
toward the best solution over iterations.
According to the uncertainty principle, the position and velocity

of a particle in the quantum world cannot be determined
simultaneously. Thus QPSO differs from standard PSO mainly in
the fact that exact values of x and v cannot be determined. Hence
the probability of finding a particle at a particular position in the
quantum search space is mapped into its actual position in the
solution space by a technique called ‘‘collapsing’’. In Quantum
Delta-Potential-Well based PSO (QDPSO) (Sun et al., 2004), a delta
potential well based probability density function is used to avoid
explosion and help the particles converge. By using Monte Carlo
Simulation (Sun et al., 2004), the position equation in QDPSO is
given by (3):

x(k) = J(k)±
L(k)
2
ln(1/
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Fig. 1. Output of SRN for Y1 in (a) Step 1 and (b) Step 2.

0 10 20 30 40 50 60 70 80 90 100
 Samples

0 10 20 30 40 50 60 70 80 90 100

 Samples

Actual
PSO
PSO–QI

–4

–2

0

2

4

–4

–2

0

2

4

Y
2

Y
2

a

b

Fig. 2. Output of SRN for Y2 in (a) Step 1 and (b) Step 2.

Table 1
MSE results for the case studies.

PSO PSO-QI
Step 1 Step 2 Step 1 Step 2

Case I Y1 1.2494 1.1487 0.7132 0.6407
Y2 0.3150 0.2996 0.1427 0.1012

Case II

G1 0.0147 0.0075 0.0147 0.0057
G2 0.0281 0.0111 0.0218 0.0068
G3 0.0225 0.0118 0.0181 0.0067
G4 0.0344 0.0167 0.0319 0.0105

where ui(k) and yi(k) are the ith input and output at instant k.
The inputs to the SRN are the present values of system inputs and
outputs. The SRN outputs are the one-step ahead prediction of the
system outputs. An SRN of 4 inputs, 10 hidden nodes and 2 output
nodes is then trained on 100 samples of uniform random numbers
between [0, 1] and tested on 100 data samples of input vector
[sin(2πk/25), cos(2πk/25)]. The dimension of the SRN training
problem is 160 and 10 in Steps 1 and 2 respectively. The testing
results obtained are shown in Figs. 1 and 2. The MSEs are shown in
Table 1.

3.2. Case II: Design of a wide area monitoring system

In the second case study, a wide area monitor (WAM) used
for the two area four machine power system described in
Venayagamoorthy (2007), and shown in Fig. 4, is considered. The
WAM is modeled by an SRN with 8 input nodes, 15 hidden nodes
and 4 output nodes (405 weights). The inputs to the SRN are
the current deviations in reference voltage Vref , caused by the
pseudorandom binary signal excitations and speed deviations of
the four machines. The outputs are the one-step ahead predictions
of their speed deviations. The operating conditions are similar to
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Fig. 3. Comparison of fitnesses from PSO and PSO-QI algorithms.

Fig. 4. Wide area monitor in a two area four machine system.
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Fig. 5. SRN output for G1 (Area 1) in (a) Step 1 and (b) Step 2.

(Venayagamoorthy, 2007). The loads are modified to have a power
transfer of 510 MW during training and 458 MW during testing
from Area 1 to 2. The voltage of all the generators is 1.03 pu in both
operating conditions. The dimension of the SRN training problem
is 405 and 15 in Step 1 and 2 respectively. The outputs of the SRNs
for two generators (G1 and G4) are shown in Figs. 5 and 6. The
fitness curve obtained for the two step process is shown in Fig. 3.
The results show the improvement from PSO to PSO-QI and from
Step 1 (first 200 iterations) to Step 2 (last 25 iterations). The MSEs
are shown in Table 1.

4. Conclusion

SRNs learning MIMO systems using a PSO-QI training and a
two-step learning approach have been presented. The results of
this study show that hard-to-train MIMO SRNs can be successfully
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Fig. 6. SRN output for G4 (Area 2) in (a) Step 1 and (b) Step 2.

trained with better accuracy. Due to dimension and training time
reductions from Step 1 to 2 in the two-step learning approach, SRN
training can successfully cope with multiple inputs and outputs;
in other words are scalable. Explicit studies on the associative
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