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Abstract - Particle Swarm Optimization (PSO) is a popular 

population-based optimization algorithm. While PSO has been 

shown to perform well in a large variety of problems, PSO is 

typically implemented in software. Population-based 

optimization algorithms such as PSO are well suited for 

execution in parallel stages. This allows PSO to be 

implemented directly in hardware and achieve much faster 

execution times than possible in software. In this paper, a 

pipelined architecture for hardware PSO implementation is 

presented. Benchmark functions solved by software and 

hardware PSO implementations are compared. The hardware 

PSO design is implemented on a Xilinx Virtex-II Pro 

Development Kit for evaluation. By implementing PSO directly 

on hardware an execution speedup of several orders of 

magnitude is observed. 

Keywords: particle swarm optimization, PSO, FPGA, 

hardware. 

 

1 Introduction 

  Adaptive systems have become a large area of interest 

since many systems operate in changing, unpredictable 

environments. Evolutionary Algorithms (EAs) are well suited 

for adapting the behavior of many adaptive systems because of 

their simplicity; EAs only require a fitness function to provide 

a measure of the system behavior. Many different variations of 

EAs for adapting system behavior have been extensively 

explored. In principle, all EAs are population-based 

optimization algorithms. The population consists of candidate 

solutions to the problem being studied; during each iteration 

of the algorithm a series of operators are applied to each 

member in the population. After the operators have processed 

the population, the candidate solutions are evaluated and given 

a level of „fitness‟ that represents their degree of performance 

for the problem being studied. Each of the operators is based 

on evolution and plays a role in combining and randomly 

modifying portions of the population. As the fitness of 

candidate solutions play a role in which solutions are selected 

to combine and modify, the population as a whole improves 

over time. Particle Swarm Optimization (PSO) is another 

population-based algorithm that begins with a population of 

potential solutions and continually evolves the solutions until 

they reach a desired level of fitness. While EAs and PSO are 

similar, PSO is simpler, requiring fewer operations. This is 

important for real-time applications where minimizing 

execution time is critical.  

PSO is a swarm intelligence based optimization algorithm that 

has been shown to perform very well for a large number of 

applications. While PSO has been applied in a large number of 

applications, PSO is typically executed in software. While it 

takes less time to develop a software implementation of PSO, 

a hardware implementation is able to achieve much faster 

execution speed. Recently, there has been interest in using 

PSO for real-time applications [1, 2]. However, in order to 

meet the time constraints of some real-time applications, PSO 

must be executed directly in hardware. 

Population-based optimization algorithms are relatively easy 

to partition into stages that execute in parallel. This makes 

population-based algorithms an excellent candidate for 

implementation directly in hardware or in a distributed 

fashion. Field Programmable Gate Arrays (FPGAs) are 

reconfigurable devices that are programmed to implement 

digital circuits. FPGAs are a popular platform for 

implementing soft computing methods due to their inherent 

flexibility as well as the advantage of relatively high-

performance at low-cost. 

Several hardware implementations of PSO have been reported 

in the literature. Reynolds et al implemented a hardware 

version of PSO for inverting a very large neural network [3]. 

One Xilinx XC2V6000 FPGA was used to execute the PSO 

algorithm while another was used for computing the fitness. 

The details of the hardware PSO architecture are not reported. 

A multi-swarm PSO architecture for the blind adaption of 

array antennas was proposed by Kokai et al [4]. Each swarm 

optimizes a single architecture and executes in parallel with 

the other swarms. The authors have not described the 

hardware architecture in detail or provided any performance 

measurements. 

Farmahini-Farahani et al have implemented PSO within a 

System-on-a-Programmable Chip (SoPC) framework [5]. The 

authors utilized a hardware implementation of the discrete 

version of PSO, implemented on a Altera Stratix 1S10ES 

Development Kit, using a soft-core Altera NIOS II embedded 



processor to compute the fitness function. Performance was 

sacrificed in exchange for flexibility by implementing the 

fitness function in software. 

In this paper we propose a compact, pipelined architecture for 

implementing PSO on a FPGA. Two benchmark problems are 

formulated in hardware and implemented on the FPGA using 

the PSO core. Both the PSO algorithm and fitness function are 

implemented in hardware to yield maximum performance from 

the FPGA platform. The processing time for the hardware 

PSO is compared to the processing time of software PSO 

executed on a workstation.  

The remainder of this paper is organized as follows: An 

overview of the PSO algorithm is given in Section 2. The 

proposed hardware PSO architecture is described in Section 3. 

The benchmark functions used and the experimental results 

are discussed in Section 4. The conclusions and future work 

are provided in Section 5.  

2 Particle Swarm Optimization 

 The PSO algorithm was developed by Kennedy and 

Eberhart and is based on the social behavior of bird flocking 

[6]. Each particle in the population has a position vector that 

represents a potential solution to the problem. The particles 

are initialized to random positions throughout the search 

space, and during each iteration of the algorithm, a velocity 

vector is computed and used to update each particle‟s position. 

Each particle‟s velocity is influenced by the particle‟s own 

experience as well as the experience of its neighbors. 

There are two basic neighborhood variants of PSO, local and 

global. In this study the more common global version of the 

PSO algorithm is applied. The population consists of N 

particles. For each iteration, a cost function, f, is used to 

measure the fitness of each particle, i, in the population. The 

position of each particle, i, is then updated, which is 

influenced by three terms, the particle‟s velocity from the last 

iteration, the difference between the particle‟s known best 

position and the particle‟s current position, and the difference 

between the swarm‟s best known position and the particle‟s 

current position. The latter two terms are each multiplied by a 

uniform random number in [0,1] to randomly vary the 

influence of each term, as well as an acceleration coefficient to 

scale and balance the influence of each term. The best position 

each particle attained is stored in the vector, pi, known as 

pbest, while the best position attained by any particle in the 

population is stored in the vector, pg, known as gbest. The 

velocity vector, vi, for each particle is then updated: 

        vi
t 1 w·vi

t c1r1·(pi
t xi

t ) c2r2 ·(pg
t xi

t )      (1) 

where w, c1, and c2 are positive and r1 and r2  are uniformly 

distributed random numbers in [0,1]. The inertia coefficient, 

w, is used to keep the particles moving in the same direction 

they have been traveling. The value for w is typically in [0, 1]. 

The term, c1, is called the cognitive acceleration term and c2 is 

called the social acceleration term. These two values balance 

the influence between the particle‟s own best performance and 

that of the population.  

The velocity is constrained between the parameters Vmin and 

Vmax to limit the maximum change in position: 

vi
t 1

vMax if vi

t+1 Vmax

vMin if vi

t+1 Vmin

vi
t 1 else

       (2) 

The position of each particle is then updated using the new 

velocities: 

xi
t 1 xi

t vi
t 1

    (3) 

The position in each dimension is limited between the 

parameters Xmin  and Xmax: 

xi
t 1

xMax if xi

t+1 Xmax

xMin if xi

t+1 Xmin

xi
t 1 else

       (4) 

 

In addition to the original continuous version of PSO, a binary 

version of PSO, Binary PSO (BPSO) has been developed [7]. 

In BPSO all values are encoded as binary strings and the 

velocity is redefined as the probability that a given bit will 

change. BPSO was developed for optimizing discrete 

problems and is not necessarily more efficient for hardware 

implementation as the velocity and position updates require 

the computation of a sigmoid and exponential function. 

Although BPSO could still be implemented in hardware, 

BPSO does not perform well on the continuous-valued 

problems used in this study [8]. For these reasons, the original 

continuous-valued version of PSO is selected for hardware 

implementation. 

3 Hardware Implementation 

Software implementations of PSO often use floating-point 

values. However, floating-point operations typically require 

several times the number of logic resources and processing 

time compared to a similar fixed-point operation. In addition, 

it is common for FPGAs to include a number of embedded 

multipliers that can be used to perform fixed-point 



multiplications without using any of the FPGA‟s 

programmable logic. For these reasons, the hardware PSO 

implementation uses fixed-point representation for all values.  

For hardware implementation, the PSO algorithm is 

decomposed into five operations that are performed on each 

particle: evaluate the fitness, update the particle's best 

position, update the global best position, update the velocity, 

and update the position. Each of these five operations are 

implemented in a separate hardware module. It should be 

noted that the constraints in (2) and (4) are not directly 

implemented; the results of the fixed-point arithmetic 

operations for (1) and (3) are set to saturate which indirectly 

constrains the values based on their fixed-point width. Since 

updating the pbest and gbest can be performed in parallel, the 

five operations can be organized in a 6-stage pipeline, 

including the initial fetch and final write stages. The hardware 

modules are shown in Fig. 1.  

 

Figure 1.  The proposed hardware PSO architecture. 

The flow for an execution of a single particle is described as 

follows. In the first stage, the position for particle i, xi is 

fetched from memory. Then in the second stage, the fitness 

module computes the fitness, f(xi), based on the position of 

particle i. The current pbest values, pi and f(pi), are also 

fetched from pbest memory. In the third stage, gbest and pbest 

are updated. xi and f(xi) are sent to both the update gbest and 

pbest modules. In addition, pi and f(pi) are provided to the 

update pbest module, while pg and f(pg) are sent to the update 

gbest module. Each module selects the lowest fitness and 

associated positions for their output, which are the new gbest 

and pbest. In addition, the old velocity, vi, is fetched from 

velocity memory. Now in the fourth stage of the pipeline, the 

new pi and f(pi) are stored in pbest memory. The update 

velocity module uses vi, xi, pi, pg, r1, and r2 to compute the new 

velocity, vi. In the fifth stage, the update position module uses 

xi and vi to compute the new position, xi. The new velocity, vi, 

is stored in velocity memory. In the final stage, the new 

position, xi, is stored in position memory. 

3.1 Hardware Velocity Update 

 In PSO, the velocity update equation involves the largest 

number of arithmetic operations. As shown in (1), there are 

five multiplications, two additions, and two subtractions. In 

hardware, multiplications require a large amount of logic and 

processing time, and therefore are to be avoided if possible. 

Since the inertia, w, is typically set to 0.8, the first term of the 

velocity update can be simplified in two different ways. The 

first is to replace the term with an arithmetic shift to the right 

of vi. This effectively changes the inertia to 0.5 and eliminates 

the multiplication. An alternative is to remove the inertia 

entirely and substitute vi for the first term.  

The cognitive and social acceleration coefficients, c1 and c2, 

are typically set to 2.0. Performing arithmetic left shifts on r1 

and r2 would effectively multiply each value by 2. However, 

since the values for c1 r1 and c2 r2 are just uniform random 

numbers in [0, 2], the fixed-point pseudo random numbers can 

just be extended to fulfill the range by incorporating another 

bit from the PRNG. 

3.2 Random Number Generation 

 Two random numbers are needed for each velocity 

update. This means 2Nm random numbers are required for a 

complete PSO execution of N particles and m iterations. While 

PSO is still able to find solutions in the absence of the random 

influence, it isn't guaranteed PSO will converge as fast or with 

as high quality of solutions [9].  Pseudo random numbers are 

generated in hardware using Pseudo Random Number 

Generators (PRNGs). Typically, linear feedback shift registers 

and cellular automata based PRNGs are used due to their 

simplicity. In this work, a neighborhood-of-four cellular 

automata random number generator is used [10]. This PRNG 

produces a pseudorandom 64-bit string each cycle. 

3.3 Memory Requirements 

 Each particle is required to store a position, velocity, best 

position, and best position fitness. In addition, a global best 

position and global best position fitness are stored. The values 

that need to be stored are categorized into two types, 

positions/velocities and fitness values. The bit-width of the 

fixed-point position values is bp, while the bit-width of the 

fitness values is bf. Therefore, each particle is required to store 

3 (bp + bf) bits, while the gbest values require (bp + bf) bits. 

The total number of memory storage required is  

(3N+1) (bp + bf) bits. 

  

3.4 Control Module 

 The control module is used to initialize the memory and 

generate the control signals for the modules. Upon reset, the 



control module enters an Init state that is used to initialize the 

counters to their respective starting states. The control module 

then enters an Init-PRNG state to initialize the PRNG. The 

Init-Particles state cycles through the particles and sets each 

particle‟s initial position, velocity, and pbest position to a 

random value from the PRNG. The gbest position is initialized 

in the same manner. The next state, Init-Pipeline, is used to 

prepare the module inputs. The Execute state is responsible for 

shifting each particle through the pipeline and properly 

passing the modules the correct particle information from 

memory while storing each particle‟s new values as they are 

updated. Upon either reaching a defined fitness or number of 

iterations, the Finished state is entered and execution halts. 

4 Results 

 The hardware PSO design is developed in VHDL and 

implemented on the Xilinx Virtex-II Pro Development Kit 

(Xilinx XC2VP30). In order to assess the performance of the 

hardware PSO implementation, the hardware implementation 

is compared to a software implementation developed in 

Matlab. The Matlab implementation is executed on a system 

with a 2.13 GHz Intel Core 2 Duo processor. First, the 

performance of the two implementations is compared with 

respect to the lowest fitness that the implementation is able to 

achieve for the benchmark problems. Then the execution 

speed of the two implementations is compared. Finally, the 

FPGA resource requirements for the hardware implementation 

are discussed. 

4.1 The Benchmark Problems 

 Two well-known benchmark optimization problems have 

been selected for comparing the two implementations. Both 

functions are multidimensional, where n represents the number 

of dimensions. The first benchmark problem is the sphere 

function (5). 

f (x) xi
2

i 1

n

   (5) 

The second benchmark problem is the Rosenbrock function 

(6). 

f (x) 1
i 1

n 1

00(xi 1 xi
2 )2 (xi 1)2

         (6) 

The sphere function is a simple unimodal function that is 

typically used to test local optimizers. The Rosenbrock 

function is multimodal for n of 4 and higher and is more 

difficult to optimize. These functions are often used to assess 

the performance of EAs. The global minimum for the sphere 

function is clearly located at xi = 0, for all i. The global 

minimum for the Rosenbrock function is located at xi = 1, for 

all i. The global minimum for each function will produce a 

fitness value of 0. In this sense, the best position is the 

position that produces the lowest fitness value. 

4.2 Simulation Results 

 For the benchmark functions, the values for Xmin  and 

Vmin are set to -128, while Xmax and Vmax  are set to 127. While 

the values are typically constrained in [-100, 100], these 

values are selected for their ease in hardware representation. 

The values for c1 and c2 are selected to be 2.0. The inertia w is 

selected to be 0.5. The number of particles is 20. While the 

hardware and software PSO implementations use the same 

parameters, each utilizes a different random number generator; 

as a result, each execution of PSO is unique. PSO is used to 

solve each benchmark function, for dimensions of 1, 5, and 

10. In each case, PSO executes for 1000 iterations before 

terminating.  

The achieved fitness for the hardware and software 

implementations of PSO on the benchmark problems is listed 

in Table I. Both the software and hardware implementations 

result in very similar fitness values after 1000 iterations. A 

comparison of the hardware and software PSO fitness values 

for the sphere function of 10 dimensions is shown in Fig. 2. 

Similarly, a comparison of the hardware and software PSO 

fitness values for the Rosenbrock function of 10 dimensions is 

shown in Fig. 3. 

TABLE I.  MINIMUM ACHIEVED FITNESS FOR SOFTWARE AND 

HARDWARE PSO  

Function n 
Fitness Achieved 

Software PSO Hardware PSO 

Sphere 

1 0.000 0.000 

5 0.000 0.000 

10 0.014 0.001 

Rosenbrock 

1 0.000 0.000 

5 0.044 0.007 

10 9.679 8.611 

 

The execution time for the software and hardware PSO 

implementations is listed in Table II. The hardware PSO 

implementation is clearly several orders of magnitude faster 

than the Matlab PSO implementation. Even for the worst-case 

improvement, the single-dimension Rosenbrock function, the 

hardware implementation is 6,220 times faster. The best-case 

improvement is for the 10-dimension sphere function, which 

achieves a speedup of 28,935X. 

 



  

Figure 2.  The gbest fitness for the sphere function of 10 

dimensions. 

  

Figure 3.  The gbest fitness for the Rosenbrock function of 10 

dimensions. 

TABLE II.  SOFTWARE AND HARDWARE PSO EXECUTION TIME 

Function n 
Execution Time Hardware 

Speedup Software PSO Hardware PSO 

Sphere 

1 2.07 sec. 200 s 10350 

5 5.79 sec. 338 s 17130 

10 10.99 sec 392 s 28935 

Rosenbrock 

1 2.14 sec 344 s 6220 

5 5.95 sec 444 s 13400 

10 10.91 sec 800 s 13637 

 

The Virtex-II Pro FPGA resources required for the 

benchmark problems are listed in Table III. The required 

number of slice flip-flops increases linearly with the number of 

dimensions. In addition, the number of 4-input Lookup Tables 

(LUTs) required scales similarly. The maximum clock speed is 

decreased as the benchmark function complexity increases. 

TABLE III.  FPGA RESOURCES FOR HARDWARE PSO 

Function n 

FPGA Resources 

Slice Flip-Flops LUTs 
Clock 

(MHz) 

Sphere 

1 1118 1523 100 

5 4744 10631 59 

10 9249 20873 51 

Rosenbrock 

1 2244 5332 58 

5 5228 12513 45 

10 9940 25750 25 

 

5 Conclusion and Future Work 

 A pipelined hardware implementation of PSO has been 

presented. The hardware implementation is shown to perform 

well on two standard benchmark problems when compared to 

a common software implementation of PSO in Matlab. When 

compared to the software implementation, the hardware 

implementation is between 6,220 - 28,935 times faster. The 

system is targeted for real-time applications where minimizing 

PSO execution time is critical. One such application is real-

time neural network training.  

A DSP implementation of a neural network for power system 

harmonics prediction has shown promising results [11]. 

However, each additional harmonic order that must be 

predicted requires additional processing power for training. 

Utilizing hardware PSO for real-time training of neural 

networks for higher order harmonics prediction is a future 

research area. 

6 References 

[1] L. Liu, W. Liu, D. A. Cartes, and N. Zhang. Real time 

implementation of particle swarm optimiation based model 

parameter identification and an application example. In 

Evolutionary Computation, 2008. CEC 2008. (IEEE World 

Congress on Computational Intel ligence). IEEE Congress on, 

pages 3480–3485, Hong Kong, June 2008 

[2] K. H. S. Hla, Y. Choi, and J. S. Park. Applying particle 

swarm optimization to prioritizing test cases for embedded 

real time software retesting. In Computer and Information 

Technology Workshops, 2008. CIT Workshops 2008. IEEE 

8th International Conference on, pages 527–532, Sydney, 

QLD, July 2008. 

[3] P. D. Reynolds, R. W. Duren, M. L. Trumbo, and I. 

Marks, R. J. FPGA implementation of particle swarm 

optimization for inversion of large neural networks. In Swarm 

Intel ligence Symposium, 2005. SIS 2005. Proceedings 2005 

IEEE, pages 389–392, June 2005. 



[4] G. Kokai, T. Christ, and H. H. Frhauf. Using hardware-

based particle swarm method for dynamic optimization of 

adaptive array antennas. In Adaptive Hardware and Systems, 

2006. AHS 2006. First NASA/ESA Conference on, pages 51–

58, Istanbul, June 2006. 

[5] A. Farmahini-Farahani, S. M. Fakhraie, and S. Safari. 

SOPC-based architecture for discrete particle swarm 

optimization. In Electronics, Circuits and Systems, 2007. 

ICECS 2007. 14th IEEE International Conference on, pages 

1003–1006, Marrakech, Dec. 2007. 

[6] R. Eberhart and J. Kennedy. A new optimizer using 

particle swarm theory. In Proceedings of the Sixth 

International Symposium on Micro Machine and Human 

Science, volume 1, pages 39–43, Nagoya, Japan, Oct. 1995. 

[7] J. Kennedy and R. C. Eberhart. A discrete binary version 

of the particle swarm algorithm. In Systems, Man, and 

Cybernetics, 1997. ‟Computational Cybernetics and 

Simulation‟., 1997 IEEE International Conference on, volume 

5, pages 4104–4108, Orlando, FL, October 1997. 

[8] M. A. Khanesar, M. Teshnehlab, and M. A. Shoorehdeli. 

A novel binary particle swarm optimization. In Control & 

Automation, 2007. MED ‟07. Mediterranean Conference on, 

pages 1–6, Athens, June 2007. 

[9] M. Rodgers, “Random numbers and their effect on 

particle swarm optimization,” 2006. [Online]. Available: 

http://ncra.ucd.ie/COMP30290/crc2006/rodgers.pdf 

[Accessed: Jan. 21, 2009]. 

[10] B. Shackleford, M. Tanaka, R. J. Carter, and G. Snider. 

FPGA implementation of neighborhood-of-four cellular 

automata random number generators. In FPGA ‟02: 

Proceedings of the 2002 ACM/SIGDA tenth international 

symposium on Field-programmable gate arrays, pages 106–

112, New York, NY, USA, 2002. ACM. 

[11] G.K. Venayagamoorthy J. Dai and R.G. Harley. 

Harmonic identification using an echo state network for 

adaptive control of an active filter in an electric ship. Accepted 

to Neural Networks, 2008. IJCNN 2008. (IEEE World 

Congress on Computational Intelligence). IEEE International 

Joint Conference on, June 2008. 

http://ncra.ucd.ie/COMP30290/crc2006/rodgers.pdf

