
Particle Swarm Optimization:

A Hardware Implementation

P. Palangpour
1
, G.K. Venayagamoorthy

1
, and S.C. Smith

2

1
 Real-Time Power and Intelligent Systems Laboratory, Missouri University of Science and Technology, Rolla, USA

2
 Asynchronous Digital Design Laboratory, University of Arkansas, Fayetteville, USA

Abstract - Particle Swarm Optimization (PSO) is a popular

population-based optimization algorithm. While PSO has been

shown to perform well in a large variety of problems, PSO is

typically implemented in software. Population-based

optimization algorithms such as PSO are well suited for

execution in parallel stages. This allows PSO to be

implemented directly in hardware and achieve much faster

execution times than possible in software. In this paper, a

pipelined architecture for hardware PSO implementation is

presented. Benchmark functions solved by software and

hardware PSO implementations are compared. The hardware

PSO design is implemented on a Xilinx Virtex-II Pro

Development Kit for evaluation. By implementing PSO directly

on hardware an execution speedup of several orders of

magnitude is observed.

Keywords: particle swarm optimization, PSO, FPGA,

hardware.

1 Introduction

 Adaptive systems have become a large area of interest

since many systems operate in changing, unpredictable

environments. Evolutionary Algorithms (EAs) are well suited

for adapting the behavior of many adaptive systems because of

their simplicity; EAs only require a fitness function to provide

a measure of the system behavior. Many different variations of

EAs for adapting system behavior have been extensively

explored. In principle, all EAs are population-based

optimization algorithms. The population consists of candidate

solutions to the problem being studied; during each iteration

of the algorithm a series of operators are applied to each

member in the population. After the operators have processed

the population, the candidate solutions are evaluated and given

a level of „fitness‟ that represents their degree of performance

for the problem being studied. Each of the operators is based

on evolution and plays a role in combining and randomly

modifying portions of the population. As the fitness of

candidate solutions play a role in which solutions are selected

to combine and modify, the population as a whole improves

over time. Particle Swarm Optimization (PSO) is another

population-based algorithm that begins with a population of

potential solutions and continually evolves the solutions until

they reach a desired level of fitness. While EAs and PSO are

similar, PSO is simpler, requiring fewer operations. This is

important for real-time applications where minimizing

execution time is critical.

PSO is a swarm intelligence based optimization algorithm that

has been shown to perform very well for a large number of

applications. While PSO has been applied in a large number of

applications, PSO is typically executed in software. While it

takes less time to develop a software implementation of PSO,

a hardware implementation is able to achieve much faster

execution speed. Recently, there has been interest in using

PSO for real-time applications [1, 2]. However, in order to

meet the time constraints of some real-time applications, PSO

must be executed directly in hardware.

Population-based optimization algorithms are relatively easy

to partition into stages that execute in parallel. This makes

population-based algorithms an excellent candidate for

implementation directly in hardware or in a distributed

fashion. Field Programmable Gate Arrays (FPGAs) are

reconfigurable devices that are programmed to implement

digital circuits. FPGAs are a popular platform for

implementing soft computing methods due to their inherent

flexibility as well as the advantage of relatively high-

performance at low-cost.

Several hardware implementations of PSO have been reported

in the literature. Reynolds et al implemented a hardware

version of PSO for inverting a very large neural network [3].

One Xilinx XC2V6000 FPGA was used to execute the PSO

algorithm while another was used for computing the fitness.

The details of the hardware PSO architecture are not reported.

A multi-swarm PSO architecture for the blind adaption of

array antennas was proposed by Kokai et al [4]. Each swarm

optimizes a single architecture and executes in parallel with

the other swarms. The authors have not described the

hardware architecture in detail or provided any performance

measurements.

Farmahini-Farahani et al have implemented PSO within a

System-on-a-Programmable Chip (SoPC) framework [5]. The

authors utilized a hardware implementation of the discrete

version of PSO, implemented on a Altera Stratix 1S10ES

Development Kit, using a soft-core Altera NIOS II embedded

processor to compute the fitness function. Performance was

sacrificed in exchange for flexibility by implementing the

fitness function in software.

In this paper we propose a compact, pipelined architecture for

implementing PSO on a FPGA. Two benchmark problems are

formulated in hardware and implemented on the FPGA using

the PSO core. Both the PSO algorithm and fitness function are

implemented in hardware to yield maximum performance from

the FPGA platform. The processing time for the hardware

PSO is compared to the processing time of software PSO

executed on a workstation.

The remainder of this paper is organized as follows: An

overview of the PSO algorithm is given in Section 2. The

proposed hardware PSO architecture is described in Section 3.

The benchmark functions used and the experimental results

are discussed in Section 4. The conclusions and future work

are provided in Section 5.

2 Particle Swarm Optimization

 The PSO algorithm was developed by Kennedy and

Eberhart and is based on the social behavior of bird flocking

[6]. Each particle in the population has a position vector that

represents a potential solution to the problem. The particles

are initialized to random positions throughout the search

space, and during each iteration of the algorithm, a velocity

vector is computed and used to update each particle‟s position.

Each particle‟s velocity is influenced by the particle‟s own

experience as well as the experience of its neighbors.

There are two basic neighborhood variants of PSO, local and

global. In this study the more common global version of the

PSO algorithm is applied. The population consists of N

particles. For each iteration, a cost function, f, is used to

measure the fitness of each particle, i, in the population. The

position of each particle, i, is then updated, which is

influenced by three terms, the particle‟s velocity from the last

iteration, the difference between the particle‟s known best

position and the particle‟s current position, and the difference

between the swarm‟s best known position and the particle‟s

current position. The latter two terms are each multiplied by a

uniform random number in [0,1] to randomly vary the

influence of each term, as well as an acceleration coefficient to

scale and balance the influence of each term. The best position

each particle attained is stored in the vector, pi, known as

pbest, while the best position attained by any particle in the

population is stored in the vector, pg, known as gbest. The

velocity vector, vi, for each particle is then updated:

 vi
t 1 w·vi

t c1r1·(pi
t xi

t) c2r2 ·(pg
t xi

t) (1)

where w, c1, and c2 are positive and r1 and r2 are uniformly

distributed random numbers in [0,1]. The inertia coefficient,

w, is used to keep the particles moving in the same direction

they have been traveling. The value for w is typically in [0, 1].

The term, c1, is called the cognitive acceleration term and c2 is

called the social acceleration term. These two values balance

the influence between the particle‟s own best performance and

that of the population.

The velocity is constrained between the parameters Vmin and

Vmax to limit the maximum change in position:

vi
t 1

vMax if vi

t+1 Vmax

vMin if vi

t+1 Vmin

vi
t 1 else

 (2)

The position of each particle is then updated using the new

velocities:

xi
t 1 xi

t vi
t 1

 (3)

The position in each dimension is limited between the

parameters Xmin and Xmax:

xi
t 1

xMax if xi

t+1 Xmax

xMin if xi

t+1 Xmin

xi
t 1 else

 (4)

In addition to the original continuous version of PSO, a binary

version of PSO, Binary PSO (BPSO) has been developed [7].

In BPSO all values are encoded as binary strings and the

velocity is redefined as the probability that a given bit will

change. BPSO was developed for optimizing discrete

problems and is not necessarily more efficient for hardware

implementation as the velocity and position updates require

the computation of a sigmoid and exponential function.

Although BPSO could still be implemented in hardware,

BPSO does not perform well on the continuous-valued

problems used in this study [8]. For these reasons, the original

continuous-valued version of PSO is selected for hardware

implementation.

3 Hardware Implementation

Software implementations of PSO often use floating-point

values. However, floating-point operations typically require

several times the number of logic resources and processing

time compared to a similar fixed-point operation. In addition,

it is common for FPGAs to include a number of embedded

multipliers that can be used to perform fixed-point

multiplications without using any of the FPGA‟s

programmable logic. For these reasons, the hardware PSO

implementation uses fixed-point representation for all values.

For hardware implementation, the PSO algorithm is

decomposed into five operations that are performed on each

particle: evaluate the fitness, update the particle's best

position, update the global best position, update the velocity,

and update the position. Each of these five operations are

implemented in a separate hardware module. It should be

noted that the constraints in (2) and (4) are not directly

implemented; the results of the fixed-point arithmetic

operations for (1) and (3) are set to saturate which indirectly

constrains the values based on their fixed-point width. Since

updating the pbest and gbest can be performed in parallel, the

five operations can be organized in a 6-stage pipeline,

including the initial fetch and final write stages. The hardware

modules are shown in Fig. 1.

Figure 1. The proposed hardware PSO architecture.

The flow for an execution of a single particle is described as

follows. In the first stage, the position for particle i, xi is

fetched from memory. Then in the second stage, the fitness

module computes the fitness, f(xi), based on the position of

particle i. The current pbest values, pi and f(pi), are also

fetched from pbest memory. In the third stage, gbest and pbest

are updated. xi and f(xi) are sent to both the update gbest and

pbest modules. In addition, pi and f(pi) are provided to the

update pbest module, while pg and f(pg) are sent to the update

gbest module. Each module selects the lowest fitness and

associated positions for their output, which are the new gbest

and pbest. In addition, the old velocity, vi, is fetched from

velocity memory. Now in the fourth stage of the pipeline, the

new pi and f(pi) are stored in pbest memory. The update

velocity module uses vi, xi, pi, pg, r1, and r2 to compute the new

velocity, vi. In the fifth stage, the update position module uses

xi and vi to compute the new position, xi. The new velocity, vi,

is stored in velocity memory. In the final stage, the new

position, xi, is stored in position memory.

3.1 Hardware Velocity Update

 In PSO, the velocity update equation involves the largest

number of arithmetic operations. As shown in (1), there are

five multiplications, two additions, and two subtractions. In

hardware, multiplications require a large amount of logic and

processing time, and therefore are to be avoided if possible.

Since the inertia, w, is typically set to 0.8, the first term of the

velocity update can be simplified in two different ways. The

first is to replace the term with an arithmetic shift to the right

of vi. This effectively changes the inertia to 0.5 and eliminates

the multiplication. An alternative is to remove the inertia

entirely and substitute vi for the first term.

The cognitive and social acceleration coefficients, c1 and c2,

are typically set to 2.0. Performing arithmetic left shifts on r1

and r2 would effectively multiply each value by 2. However,

since the values for c1 r1 and c2 r2 are just uniform random

numbers in [0, 2], the fixed-point pseudo random numbers can

just be extended to fulfill the range by incorporating another

bit from the PRNG.

3.2 Random Number Generation

 Two random numbers are needed for each velocity

update. This means 2Nm random numbers are required for a

complete PSO execution of N particles and m iterations. While

PSO is still able to find solutions in the absence of the random

influence, it isn't guaranteed PSO will converge as fast or with

as high quality of solutions [9]. Pseudo random numbers are

generated in hardware using Pseudo Random Number

Generators (PRNGs). Typically, linear feedback shift registers

and cellular automata based PRNGs are used due to their

simplicity. In this work, a neighborhood-of-four cellular

automata random number generator is used [10]. This PRNG

produces a pseudorandom 64-bit string each cycle.

3.3 Memory Requirements

 Each particle is required to store a position, velocity, best

position, and best position fitness. In addition, a global best

position and global best position fitness are stored. The values

that need to be stored are categorized into two types,

positions/velocities and fitness values. The bit-width of the

fixed-point position values is bp, while the bit-width of the

fitness values is bf. Therefore, each particle is required to store

3 (bp + bf) bits, while the gbest values require (bp + bf) bits.

The total number of memory storage required is

(3N+1) (bp + bf) bits.

3.4 Control Module

 The control module is used to initialize the memory and

generate the control signals for the modules. Upon reset, the

control module enters an Init state that is used to initialize the

counters to their respective starting states. The control module

then enters an Init-PRNG state to initialize the PRNG. The

Init-Particles state cycles through the particles and sets each

particle‟s initial position, velocity, and pbest position to a

random value from the PRNG. The gbest position is initialized

in the same manner. The next state, Init-Pipeline, is used to

prepare the module inputs. The Execute state is responsible for

shifting each particle through the pipeline and properly

passing the modules the correct particle information from

memory while storing each particle‟s new values as they are

updated. Upon either reaching a defined fitness or number of

iterations, the Finished state is entered and execution halts.

4 Results

 The hardware PSO design is developed in VHDL and

implemented on the Xilinx Virtex-II Pro Development Kit

(Xilinx XC2VP30). In order to assess the performance of the

hardware PSO implementation, the hardware implementation

is compared to a software implementation developed in

Matlab. The Matlab implementation is executed on a system

with a 2.13 GHz Intel Core 2 Duo processor. First, the

performance of the two implementations is compared with

respect to the lowest fitness that the implementation is able to

achieve for the benchmark problems. Then the execution

speed of the two implementations is compared. Finally, the

FPGA resource requirements for the hardware implementation

are discussed.

4.1 The Benchmark Problems

 Two well-known benchmark optimization problems have

been selected for comparing the two implementations. Both

functions are multidimensional, where n represents the number

of dimensions. The first benchmark problem is the sphere

function (5).

f (x) xi
2

i 1

n

 (5)

The second benchmark problem is the Rosenbrock function

(6).

f (x) 1
i 1

n 1

00(xi 1 xi
2)2 (xi 1)2

 (6)

The sphere function is a simple unimodal function that is

typically used to test local optimizers. The Rosenbrock

function is multimodal for n of 4 and higher and is more

difficult to optimize. These functions are often used to assess

the performance of EAs. The global minimum for the sphere

function is clearly located at xi = 0, for all i. The global

minimum for the Rosenbrock function is located at xi = 1, for

all i. The global minimum for each function will produce a

fitness value of 0. In this sense, the best position is the

position that produces the lowest fitness value.

4.2 Simulation Results

 For the benchmark functions, the values for Xmin and

Vmin are set to -128, while Xmax and Vmax are set to 127. While

the values are typically constrained in [-100, 100], these

values are selected for their ease in hardware representation.

The values for c1 and c2 are selected to be 2.0. The inertia w is

selected to be 0.5. The number of particles is 20. While the

hardware and software PSO implementations use the same

parameters, each utilizes a different random number generator;

as a result, each execution of PSO is unique. PSO is used to

solve each benchmark function, for dimensions of 1, 5, and

10. In each case, PSO executes for 1000 iterations before

terminating.

The achieved fitness for the hardware and software

implementations of PSO on the benchmark problems is listed

in Table I. Both the software and hardware implementations

result in very similar fitness values after 1000 iterations. A

comparison of the hardware and software PSO fitness values

for the sphere function of 10 dimensions is shown in Fig. 2.

Similarly, a comparison of the hardware and software PSO

fitness values for the Rosenbrock function of 10 dimensions is

shown in Fig. 3.

TABLE I. MINIMUM ACHIEVED FITNESS FOR SOFTWARE AND

HARDWARE PSO

Function n
Fitness Achieved

Software PSO Hardware PSO

Sphere

1 0.000 0.000

5 0.000 0.000

10 0.014 0.001

Rosenbrock

1 0.000 0.000

5 0.044 0.007

10 9.679 8.611

The execution time for the software and hardware PSO

implementations is listed in Table II. The hardware PSO

implementation is clearly several orders of magnitude faster

than the Matlab PSO implementation. Even for the worst-case

improvement, the single-dimension Rosenbrock function, the

hardware implementation is 6,220 times faster. The best-case

improvement is for the 10-dimension sphere function, which

achieves a speedup of 28,935X.

Figure 2. The gbest fitness for the sphere function of 10

dimensions.

Figure 3. The gbest fitness for the Rosenbrock function of 10

dimensions.

TABLE II. SOFTWARE AND HARDWARE PSO EXECUTION TIME

Function n
Execution Time Hardware

Speedup Software PSO Hardware PSO

Sphere

1 2.07 sec. 200 s 10350

5 5.79 sec. 338 s 17130

10 10.99 sec 392 s 28935

Rosenbrock

1 2.14 sec 344 s 6220

5 5.95 sec 444 s 13400

10 10.91 sec 800 s 13637

The Virtex-II Pro FPGA resources required for the

benchmark problems are listed in Table III. The required

number of slice flip-flops increases linearly with the number of

dimensions. In addition, the number of 4-input Lookup Tables

(LUTs) required scales similarly. The maximum clock speed is

decreased as the benchmark function complexity increases.

TABLE III. FPGA RESOURCES FOR HARDWARE PSO

Function n

FPGA Resources

Slice Flip-Flops LUTs
Clock

(MHz)

Sphere

1 1118 1523 100

5 4744 10631 59

10 9249 20873 51

Rosenbrock

1 2244 5332 58

5 5228 12513 45

10 9940 25750 25

5 Conclusion and Future Work

 A pipelined hardware implementation of PSO has been

presented. The hardware implementation is shown to perform

well on two standard benchmark problems when compared to

a common software implementation of PSO in Matlab. When

compared to the software implementation, the hardware

implementation is between 6,220 - 28,935 times faster. The

system is targeted for real-time applications where minimizing

PSO execution time is critical. One such application is real-

time neural network training.

A DSP implementation of a neural network for power system

harmonics prediction has shown promising results [11].

However, each additional harmonic order that must be

predicted requires additional processing power for training.

Utilizing hardware PSO for real-time training of neural

networks for higher order harmonics prediction is a future

research area.

6 References

[1] L. Liu, W. Liu, D. A. Cartes, and N. Zhang. Real time

implementation of particle swarm optimiation based model

parameter identification and an application example. In

Evolutionary Computation, 2008. CEC 2008. (IEEE World

Congress on Computational Intel ligence). IEEE Congress on,

pages 3480–3485, Hong Kong, June 2008

[2] K. H. S. Hla, Y. Choi, and J. S. Park. Applying particle

swarm optimization to prioritizing test cases for embedded

real time software retesting. In Computer and Information

Technology Workshops, 2008. CIT Workshops 2008. IEEE

8th International Conference on, pages 527–532, Sydney,

QLD, July 2008.

[3] P. D. Reynolds, R. W. Duren, M. L. Trumbo, and I.

Marks, R. J. FPGA implementation of particle swarm

optimization for inversion of large neural networks. In Swarm

Intel ligence Symposium, 2005. SIS 2005. Proceedings 2005

IEEE, pages 389–392, June 2005.

[4] G. Kokai, T. Christ, and H. H. Frhauf. Using hardware-

based particle swarm method for dynamic optimization of

adaptive array antennas. In Adaptive Hardware and Systems,

2006. AHS 2006. First NASA/ESA Conference on, pages 51–

58, Istanbul, June 2006.

[5] A. Farmahini-Farahani, S. M. Fakhraie, and S. Safari.

SOPC-based architecture for discrete particle swarm

optimization. In Electronics, Circuits and Systems, 2007.

ICECS 2007. 14th IEEE International Conference on, pages

1003–1006, Marrakech, Dec. 2007.

[6] R. Eberhart and J. Kennedy. A new optimizer using

particle swarm theory. In Proceedings of the Sixth

International Symposium on Micro Machine and Human

Science, volume 1, pages 39–43, Nagoya, Japan, Oct. 1995.

[7] J. Kennedy and R. C. Eberhart. A discrete binary version

of the particle swarm algorithm. In Systems, Man, and

Cybernetics, 1997. ‟Computational Cybernetics and

Simulation‟., 1997 IEEE International Conference on, volume

5, pages 4104–4108, Orlando, FL, October 1997.

[8] M. A. Khanesar, M. Teshnehlab, and M. A. Shoorehdeli.

A novel binary particle swarm optimization. In Control &

Automation, 2007. MED ‟07. Mediterranean Conference on,

pages 1–6, Athens, June 2007.

[9] M. Rodgers, “Random numbers and their effect on

particle swarm optimization,” 2006. [Online]. Available:

http://ncra.ucd.ie/COMP30290/crc2006/rodgers.pdf

[Accessed: Jan. 21, 2009].

[10] B. Shackleford, M. Tanaka, R. J. Carter, and G. Snider.

FPGA implementation of neighborhood-of-four cellular

automata random number generators. In FPGA ‟02:

Proceedings of the 2002 ACM/SIGDA tenth international

symposium on Field-programmable gate arrays, pages 106–

112, New York, NY, USA, 2002. ACM.

[11] G.K. Venayagamoorthy J. Dai and R.G. Harley.

Harmonic identification using an echo state network for

adaptive control of an active filter in an electric ship. Accepted

to Neural Networks, 2008. IJCNN 2008. (IEEE World

Congress on Computational Intelligence). IEEE International

Joint Conference on, June 2008.

http://ncra.ucd.ie/COMP30290/crc2006/rodgers.pdf

